Eike C Schulz

Georg-August-Universität Göttingen, Göttingen, Lower Saxony, Germany

Are you Eike C Schulz?

Claim your profile

Publications (7)57.35 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In eukaryotes, DNA methylation is an important epigenetic modification that is generally involved in gene regulation. Methyltransferases (MTases) of the DNMT2 family have been shown to have a dual substrate specificity acting on DNA as well as on three specific tRNAs (tRNA(Asp), tRNA(Val), tRNA(Gly)). Entamoeba histolytica is a major human pathogen, and expresses a single DNA MTase (EhMeth) that belongs to the DNMT2 family and shows high homology to the human enzyme as well as to the bacterial DNA MTase M.HhaI. The molecular basis for the recognition of the substrate tRNAs and discrimination of non-cognate tRNAs is unknown. Here we present the crystal structure of the cytosine-5-methyltransferase EhMeth at a resolution of 2.15 Å, in complex with its reaction product S-adenosyl-L-homocysteine, revealing all parts of a DNMT2 MTase, including the active site loop. Mobility shift assays show that in vitro the full length tRNA is required for stable complex formation with EhMeth.
    PLoS ONE 01/2012; 7(6):e38728. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Entamoeba histolytica enolase (EhENO) reversibly interconverts 2-phosphoglyceric acid (2-PGA) and phosphoenolpyruvic acid (PEP). The crystal structure of the homodimeric EhENO is presented at a resolution of 1.9 Å. In the crystal structure EhENO presents as an asymmetric dimer with one active site in the open conformation and the other active site in the closed conformation. Interestingly, both active sites contain a copurified 2-PGA molecule. While the 2-PGA molecule in the closed active site closely resembles the conformation known from other enolase-2-PGA complexes, the conformation in the open active site is different. Here, 2-PGA is shifted approximately 1.6 Å away from metal ion I, most likely representing a precatalytic situation.
    Acta Crystallographica Section D Biological Crystallography 07/2011; 67(Pt 7):619-27. · 12.67 Impact Factor
  • Eike C Schulz, Ralf Ficner
    [Show abstract] [Hide abstract]
    ABSTRACT: Hallmarks of proteins containing β-helices are their increased stability and rigidity and their aggregation prone folding pathways. While parallel β-helices fold independently, the folding and assembly of many triple β-helices depends on a registration signal in order to adopt the correct three-dimensional structure. In some cases this is a mere trimerization domain, in others specialized chaperones are required. Recently, the crystal structures of two classes of intramolecular chaperones of β-helical proteins have been determined. Both mediate the assembly of large tailspike proteins and release themselves after maturation; however, they differ substantially in their structure and autoproteolytic release mechanisms.
    Current Opinion in Structural Biology 02/2011; 21(2):232-9. · 8.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The major virulence factor of the neuroinvasive pathogen Escherichia coli K1 is the K1 capsule composed of α2,8-linked polysialic acid (polySia). K1 strains harboring the CUS-3 prophage modify their capsular polysaccharide by phase-variable O-acetylation, a step that is associated with increased virulence. Here we present the crystal structure of the prophage-encoded polysialate O-acetyltransferase NeuO. The homotrimeric enzyme belongs to the left-handed β-helix (LβH) family of acyltransferases and is characterized by an unusual funnel-shaped outline. Comparison with other members of the LβH family allowed the identification of active site residues and proposal of a catalytic mechanism and highlighted structural characteristics of polySia specific O-acetyltransferases. As a unique feature of NeuO, the enzymatic activity linearly increases with the length of the N-terminal poly-ψ-domain which is composed of a variable number of tandem copies of an RLKTQDS heptad. Since the poly-ψ-domain was not resolved in the crystal structure it is assumed to be unfolded in the apo-enzyme.
    PLoS ONE 01/2011; 6(3):e17403. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An alpha-2,8-linked polysialic acid (polySia) capsule confers immune tolerance to neuroinvasive, pathogenic prokaryotes such as Escherichia coli K1 and Neisseria meningitidis and supports host infection by means of molecular mimicry. Bacteriophages of the K1 family, infecting E. coli K1, specifically recognize and degrade this polySia capsule utilizing tailspike endosialidases. While the crystal structure for the catalytic domain of the endosialidase of bacteriophage K1F (endoNF) has been solved, there is yet no structural information on the mode of polySia binding and cleavage available. The crystal structure of activity deficient active-site mutants of the homotrimeric endoNF cocrystallized with oligomeric sialic acid identified three independent polySia binding sites in each endoNF monomer. The bound oligomeric sialic acid displays distinct conformations at each site. In the active site, a Sia(3) molecule is bound in an extended conformation representing the enzyme-product complex. Structural and biochemical data supported by molecular modeling enable to propose a reaction mechanism for polySia cleavage by endoNF.
    Journal of Molecular Biology 03/2010; 397(1):341-51. · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein folding is often mediated by molecular chaperones. Recently, a novel class of intramolecular chaperones has been identified in tailspike proteins of evolutionarily distant viruses, which require a C-terminal chaperone for correct folding. The highly homologous chaperone domains are interchangeable between pre-proteins and release themselves after protein folding. Here we report the crystal structures of two intramolecular chaperone domains in either the released or the pre-cleaved form, revealing the role of the chaperone domain in the formation of a triple-beta-helix fold. Tentacle-like protrusions enclose the polypeptide chains of the pre-protein during the folding process. After the assembly, a sensory mechanism for correctly folded beta-helices triggers a serine-lysine catalytic dyad to autoproteolytically release the mature protein. Sequence analysis shows a conservation of the intramolecular chaperones in functionally unrelated proteins sharing beta-helices as a common structural motif.
    Nature Structural & Molecular Biology 02/2010; 17(2):210-5. · 11.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endosialidase NF (endoNF) is a bacteriophage-derived endosialidase that specifically degrades alpha-2,8-linked polysialic acid. The structure of a new crystal form of endoNF in complex with sialic acid has been refined at 0.98 A resolution. The 210 kDa homotrimeric multi-domain enzyme displays outstanding stability and resistance to SDS. Even at atomic resolution, only a minor fraction of side chains possess alternative conformations. However, multiple conformations of an active-site residue imply that it has an important catalytic function in the cleavage mechanism of polysialic acid.
    Acta Crystallographica Section D Biological Crystallography 02/2010; 66(Pt 2):176-80. · 12.67 Impact Factor

Publication Stats

27 Citations
57.35 Total Impact Points

Institutions

  • 2010–2012
    • Georg-August-Universität Göttingen
      • • Institute of Microbiology and Genetics
      • • Department of Molecular Structural Biology
      Göttingen, Lower Saxony, Germany