Sarah F Funderburk

Mount Sinai School of Medicine, Manhattan, NY, United States

Are you Sarah F Funderburk?

Claim your profile

Publications (3)24.84 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Beclin 1 is a core component of the Class III Phosphatidylinositol 3-Kinase VPS34 complex. The coiled coil domain of Beclin 1 serves as an interaction platform for assembly of distinct Atg14L- and UVRAG-containing complexes to modulate VPS34 activity. Here we report the crystal structure of the coiled coil domain that forms an antiparallel dimer and is rendered metastable by a series of 'imperfect' a-d' pairings at its coiled coil interface. Atg14L and UVRAG promote the transition of metastable homodimeric Beclin 1 to heterodimeric Beclin1-Atg14L/UVRAG assembly. Beclin 1 mutants with their 'imperfect' a-d' pairings modified to enhance self-interaction, show distinctively altered interactions with Atg14L or UVRAG. These results suggest that specific utilization of the dimer interface and modulation of the homodimer-heterodimer transition by Beclin 1-interacting partners may underlie the molecular mechanism that controls the formation of various Beclin1-VPS34 subcomplexes to exert their effect on an array of VPS34-related activities, including autophagy.
    Nature Communications 01/2012; 3:662. · 10.74 Impact Factor
  • Source
    Sarah F Funderburk, Qing Jun Wang, Zhenyu Yue
    [Show abstract] [Hide abstract]
    ABSTRACT: An increasing body of research on autophagy provides overwhelming evidence for its connection to diverse biological functions and human diseases. Beclin 1, the first mammalian autophagy protein to be described, appears to act as a nexus point between autophagy, endosomal, and perhaps also cell death pathways. Beclin 1 performs these roles as part of a core complex that contains vacuolar sorting protein 34 (VPS34), a class III phosphatidylinositol-3 kinase. The precise mechanism of Beclin 1-mediated regulation of these cellular functions is unclear, but substantial progress has recently been made in identifying new players and their functions in Beclin 1-VSP34 complexes. Here we review emerging studies that are beginning to unveil the physiological functions of Beclin 1-VPS34 in the central control of autophagic activity and other trafficking events through the formation of distinct Beclin 1-VPS34 protein complexes.
    Trends in cell biology 03/2010; 20(6):355-62. · 12.12 Impact Factor
  • Source
    Sarah F Funderburk, Bridget K Marcellino, Zhenyu Yue
    [Show abstract] [Hide abstract]
    ABSTRACT: The autophagy pathway is the major degradation pathway of the cell for long-lived proteins and organelles. Dysfunction of autophagy has been linked to several neurodegenerative disorders that are associated with an accumulation of misfolded protein aggregates. Alzheimer's disease, the most common neurodegenerative disorder, is characterized by 2 aggregate forms, tau tangles and amyloid-beta plaques. Autophagy has been linked to Alzheimer's disease pathogenesis through its merger with the endosomal-lysosomal system, which has been shown to play a role in the formation of the latter amyloid-beta plaques. However, the precise role of autophagy in Alzheimer's disease pathogenesis is still under contention. One hypothesis is that aberrant autophagy induction results in an accumulation of autophagic vacuoles containing amyloid-beta and the components necessary for its generation, whereas other evidence points to impaired autophagic clearance or even an overall reduction in autophagic activity playing a role in Alzheimer's disease pathogenesis. In this review, we discuss the current evidence linking autophagy to Alzheimer's disease as well as the uncertainty over the exact role and level of autophagic regulation in the pathogenic mechanism of Alzheimer's disease.
    Mount Sinai Journal of Medicine A Journal of Translational and Personalized Medicine 12/2009; 77(1):59-68. · 1.99 Impact Factor