Mary Ann Perle

NYU Langone Medical Center, New York City, New York, United States

Are you Mary Ann Perle?

Claim your profile

Publications (2)6.74 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been proposed that hypermutability is necessary to account for the high frequency of mutations in cancer. However, historically, the mutation rate (mu) has been difficult to measure directly, and increased cell turnover or selection could provide an alternative explanation. We recently developed an assay for mu using PIG-A as a sentinel gene and estimated that its average value is 10.6 x 10(-7) mutations per cell division in B-lymphoblastoid cell lines (BLCLs) from normal donors. Here we have measured mu in human malignancies and found that it was elevated in cell lines derived from T cell acute lymphoblastic leukemia, mantle cell lymphoma, follicular lymphoma in transformed phase, and 2 plasma cell neoplasms. In contrast, mu was much lower in a marginal zone lymphoma cell line and 5 other plasma cell neoplasms. The highest mu value that we measured, 3286 x 10(-7), is 2 orders of magnitude above the range we have observed in non-malignant human cells. We conclude that the type of genomic instability detected in this assay is a common but not universal feature of hematologic malignancies.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 04/2010; 686(1-2):1-8. DOI:10.1016/j.mrfmmm.2009.11.012 · 4.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Individuals with rare cytogenetic variants have contributed to our understanding of the genetics of sex development and its disorders. Here, we report on a child with a de novo 12;17 translocation, 46,XX,t(12;17)(q14.3;q24.3) chromosome complement, resulting in SRY-negative 46,XX testicular disorder of sex development (46,XX DSD without campomelic dysplasia). The chromosome 12 breakpoint was mapped via array comparative genomic hybridization (aCGH) of a hybrid somatic cell line to 64.2-64.6 Mb (from the p arm telomere). The chromosome 17 breakpoint was mapped to 66.4-67.1 Mb, that is, upstream of SOX9. The location of the chromosome 17 breakpoint was refined by fluorescence in situ hybridization (FISH) at > or =776 kb upstream of SOX9. Thus, the 12;17 translocation removed part of the SOX9 cis-regulatory region and replaced it with a regulatory element from pseudogene LOC204010 or the next gene, Deynar, of chromosome 12, potentially causing up-regulation of the testis-determining SOX9 gene during gonadal development and the phenotype of 46,XX testicular DSD.
    American Journal of Medical Genetics Part A 02/2010; 152A(2):422-6. DOI:10.1002/ajmg.a.33201 · 2.30 Impact Factor