Xiao-Yang Zhou

Third Military Medical University, Ch’ung-ch’ing-shih, Chongqing Shi, China

Are you Xiao-Yang Zhou?

Claim your profile

Publications (4)11.41 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Cytochomosome P450 enzymes (CYP) are heme-containing monooxygenases responsible for oxidative metabolism of many exogenous and endogenous compounds including drugs. The species difference of CYP limits the extent to which data obtained from animals can be translated to humans in pharmacodynamics or pharmacokinetics studies. Transgenic expression of human CYP in animals lacking or with largely reduced endogenous CYP counterparts is recognized as an ideal strategy to correct CYP species difference. CYP3A is the most abundant CYP subfamily both in human and mammals. In this study, we designed a microRNA-based shRNA (miR-shRNA) simultaneously targeting four members of mouse CYP3A subfamily (CYP3A11, CYP3A16, CYP3A41 and CYP3A44), and transgenic mice expressing the designed miR-shRNA were generated by lentiviral transgenesis. Results showed that the CYP3A expression level in transgenic mice was markedly reduced compared to that in wild type or unrelated miR-shRNA transgenic mice, and was inversely correlated to the miR-shRNA expression level. The CYP3A expression levels in transgenic offspring of different generations were also remarkably lower compared to those of controls, and moreover the inhibition rate of CYP3A expression remained comparable over generations. The ratio of the targeted CYP3A transcriptional levels was comparable between knockdown and control mice of the same gender as detected by RT-PCR DGGE analysis. These data suggested that transgenic miR-shRNA suppressed CYP3A expression in a dose-dependent and inheritable manner, and transcriptional levels of the targeted CYP3As were suppressed to a similar extent. The observed knockdown efficacy was further confirmed by enzymatic activity analysis, and data showed that CYP3A activities in transgenic mice were markedly reduced compared to those in wild-type or unrelated miR-shRNA transgenic controls (1.11±0.71 vs 5.85±1.74, 5.9±2.4; P<0.01). This work laid down a foundation to further knock down the remaining murine CYP3As or CYPs of other subfamilies, and a basis to generate CYP knockdown animals of other species.
    PLoS ONE 01/2012; 7(1):e30560. · 3.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Xenogeneic skin, especially porcine skin, has already been used to cover large wounds in clinic practice of wound care. Our previous data showed that transgenic expression of human cytoxic T-lymphocyte associated antigen4-immunoglobulin (hCTLA4Ig) in murine skin graft remarkably prolonged its survival in xenogeneic burn wounds without extensive immunosuppression in recipients, suggesting that transgenic hCTLA4Ig expression in skin graft may be an effective and safe method to prolong its survival in xenogeneic wounds for coverage. Lentiviral transgenesis provides an extremely efficient and cost-effective method to produce transgenic animals. However, tissue-targeted transgenic expression of biologically functional protein by lentiviral transgenesis is rarely reported. In this work, a recombinant lentiviral vector (LV), named FKCW in this article, was constructed by inserting a skin-specific hCTLA4Ig expression cassette consisting of keratin 14 (K14) promoter, hCTLA4Ig coding sequence and an intronic fragment. Its efficacy for transgenesis and skin-specific expression of bio-active hCTLA4Ig protein was tested using mice as models. The LV FKCW was readily to be packaged and concentrated to high titres (1.287-6.254 × 10(9) TU/ml) by conventional lentivirus package system. Using eggs collected from only five mated females having been subjected to conventional super-ovulation treatment, 8 hCTLA4Ig transgenic founder mice were generated with the concentrated FKCW vector, and transgenic founder per injected and transferred egg was 6.3%, which was nearly 9-fold higher than that for DNA micro-injection with a similar transgene construct in our previous work. The lentiviral transgenic hCTLA4Ig exhibited strictly skin-specific expression at a level comparable to or even slightly higher than that of transgenic hCTLA4Ig delivered by micro-injection in a similar cassette. Lentiviral transgenic hCTLA4Ig protein remarkably suppressed human lymphocyte proliferation in vitro to a degree comparable to that of commercially purchased purified hCTLA4Ig protein with defined activity at similar concentrations. Besides, lentiviral hCTLA4Ig transgenic mouse skin grafted into rat burn wounds exhibited remarkably extended survival compared to wild-type skin of the same strain (13.8 ± 3.8 vs. 6.8 ± 3.0 days), indicating that lentiviral transgenic hCTLA4Ig did inhibit immune rejection against xenogeneic skin graft in vivo. These results laid down the foundation to further efficiently generate transgenic pigs skin-specifically expressing bio-active hCTLA4Ig by lentiviral transgenesis, and provided a demonstration that transgenic animals with tissue-targeted expression of biologically functional protein can be efficiently produced using LV.
    Transgenic Research 10/2011; 21(3):579-91. · 2.61 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Although recent studies have highlighted the role of epicardial cells during cardiac development and regeneration, their cardiomyogenic potential is still controversial due to the question of lineage tracing of epicardial cells. The present study therefore aimed to examine the the expression of Tbx18 and Wt1 in embryonic heart and to identify whether Tbx18 and Wt1 themselves expressed in the cardiomyocyte. Mouse embryonic hearts were collected at different stages for immunofluorescence costaining with either Tbx18 and the cardiac transcription factor Nkx2.5 or Wilms tumor 1 (Wt1) and Nkx2.5. Tbx18 and Wt1, but not Nkx2.5, were expressed in the proepicardium and epicardium. Tbx18 was expressed in cells within the heart from E10.5 to at least E14.5; these Tbx18-expressing cells were Nkx2.5 positive, except for a few cells that were Nkx2.5 negative at E14.5. Wt1 was expressed in cells within the heart from E12.5 to at least E14.5, but these Wt1-expressing cells were Nkx2.5 negative. The data obtained in this study demonstrate that Tbx18 is expressed in the cardiomyocytes from E10.5 to at least E14.5, and Wt1 is expressed within the heart from E12.5 to at least E14.5, but not in the cardiomyocyte. These findings may provide new insights on the role of the epicardial cells in cardiac regeneration.
    Journal of Biomedical Science 08/2011; 18:67. · 2.46 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Lentiviral transgenesis is now recognized as an extremely efficient and cost-effective method to produce transgenic animals. Transgenes delivered by lentiviral vectors exhibited inheritable expression in many species including those which are refractory to genetic modification such as non-human primates. However, epigenetic modification was frequently observed in lentiviral integrants, and transgene expression found to be inversely correlated with methylation density. Recent data showed that about one-third lentiviral integrants exhibited hypermethylation and low expression, but did not demonstrate whether those integrants with high expression could remain constant expression and hypomethylated during long term germline transmission. In this study, using lentiviral eGFP transgenic mice as the experimental animals, lentiviral eGFP expression levels and its integrant numbers in genome were quantitatively analyzed by fluorescent quantitative polymerase-chain reaction (FQ-PCR), using the house-keeping gene ribosomal protein S18 (Rps18) and the single copy gene fatty acid binding protein of the intestine (Fabpi) as the internal controls respectively. The methylation densities of the integrants were quantitatively analyzed by bisulfite sequencing. We found that the lentiviral integrants with high expression exhibited a relative constant expression level per integrant over at least seven generations. Besides, the individuals containing these integrants exhibited eGFP expression levels which were positively and almost linearly correlated with the integrant numbers in their genomes, suggesting that no remarkable position effect on transgene expression of the integrants analyzed was observed. In addition, over seven generations the methylation density of these integrants did not increase, but rather decreased remarkably, indicating that these high expressing integrants were not subjected to de novo methylation during at least seven generations of germline transmission. Taken together, these data suggested that transgenic lines with long term stable expression and no position effect can be established by lentiviral transgenesis.
    Transgenic Research 10/2010; 19(5):775-84. · 2.61 Impact Factor

Publication Stats

14 Citations
1 Download
300 Views
11.41 Total Impact Points

Institutions

  • 2010–2012
    • Third Military Medical University
      • Institute of Burn Research
      Ch’ung-ch’ing-shih, Chongqing Shi, China