Jiapeng Zhong

China Medical University (PRC), Feng-t’ien, Liaoning, China

Are you Jiapeng Zhong?

Claim your profile

Publications (3)6.86 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Adequate thyroid hormone is critical for cerebellar development. Developmental hypothyroidism induced by iodine deficiency during the perinatal period results in permanent impairments of cerebellar development with an unclear mechanism. In the present study we investigated effects of perinatal iodine deficiency and hypothyroidism on cerebellar cell apoptosis, doublecortin (Dcx) and reelin. Apoptosis is an essential part of neural development. Dcx and reelin are two important molecules involved in neuronal migration, structure, and development in cerebellum. Two developmental rat models were created by administering dam rats with either iodine-deficient diet or propylthiouracil (PTU, 5 ppm or 15 ppm)-added drinking water from gestational day (GD) 6 until postnatal day (PND) 28. TUNEL assay and protein levels of Dcx and reelin in cerebella were assessed on PND14, 21 and 28. Apoptotic cells were increased in the iodine-deficient and PTU-treated rats. Dcx protein levels in the cerebella of iodine-deficient and PTU-treated rats were significantly downregulated on PND14. Interestingly, iodine deficiency and PTU treatment upregulated the levels of Dcx protein on PND21 and 28. Reelin expressions in iodine-deficient and PTU-treated rats were significantly decreased on PND14 and 21. On PND28, reelin expressions of three treated groups were still lower than control group, although without significant difference. These findings may implicate alterations in cell apoptosis and levels of Dcx and reelin in the impairments of cerebellar development induced by developmental iodine deficiency and hypothyroidism.
    Archives of medical research 05/2012; 43(4):255-64. DOI:10.1016/j.arcmed.2012.05.002 · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adequate thyroid hormone is critical for cerebellar development. Developmental hypothyroidism induced by iodine deficiency during gestation and postnatal period results in permanent impairments of cerebellar development with an unclear mechanism. In the present study, we implicate cerebellar caveolin-1 and synaptotagmin-1, the two important molecules involved in neuronal development, in developmental iodine deficiency, and in developmental hypothyroidism. Two developmental rat models were created by administrating dam rats with either iodine-deficient diet or propylthiouracil (PTU, 5 or 15 ppm)-added drinking water from gestational day 6 till postnatal day (PN) 28. Nissl staining and the levels of caveolin-1 and synaptotagmin-1 in cerebella were assessed on PN28 and PN42. The results show that the numbers of Purkinje cells were reduced in the iodine-deficient and PTU-treated rats. The upregulation of caveolin-1 and the downregulation of synaptotagmin-1 were observed in both iodine-deficient and PTU-treated rats. These findings may implicate decreases in the number of Purkinje cells and the alterations in the levels of caveolin-1 and synaptotagmin-1 in the impairments of cerebellar development induced by developmental iodine deficiency and hypothyroidism.
    Biological trace element research 05/2011; 144(1-3):1039-49. DOI:10.1007/s12011-011-9089-7 · 1.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Developmental iodine deficiency results in inadequate thyroid hormone (TH), which damages the hippocampus. Here, we explored the roles of hippocampal doublecortin and neural cell adhesion molecule (NCAM)-180 in developmental iodine deficiency and hypothyroidism. Two developmental rat models were established with either an iodine-deficient diet, or propylthiouracil (PTU)-adulterated water (5 ppm or 15 ppm) to impair thyroid function, in pregnant rats from gestational day 6 until postnatal day (PN) 28. Silver-stained neurons and protein levels of doublecortin and NCAM-180 in several hippocampal subregions were assessed on PN14, PN21, PN28, and PN42. The results show that nerve fibers in iodine-deficient and 15 ppm PTU-treated rats were injured on PN28 and PN42. Downregulation of doublecortin and upregulation of NCAM-180 were observed in iodine-deficient and 15 ppm PTU-treated rats from PN14 on. These alterations were irreversible by the restoration of serum TH concentrations on PN42. Developmental iodine deficiency and hypothyroidism impair the expression of doublecortin and NCAM-180, leading to nerve fiber malfunction and thus impairments in hippocampal development.
    BMC Neuroscience 04/2010; 11:50. DOI:10.1186/1471-2202-11-50 · 2.85 Impact Factor