Katherine E Prater

Concordia University–Ann Arbor, Ann Arbor, Michigan, United States

Are you Katherine E Prater?

Claim your profile

Publications (8)61.69 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Anhedonia is the inability to experience pleasure from normally pleasant stimuli. Although anhedonia is a prominent feature of many psychiatric disorders, trait anhedonia is also observed dimensionally in healthy individuals. Currently, the neurobiological basis of anhedonia is poorly understood because it has been mainly investigated in patients with psychiatric disorders. Thus, previous studies have not been able to adequately disentangle the neural correlates of anhedonia from other clinical symptoms. In this study, trait anhedonia was assessed in well-characterized healthy participants with no history of Axis I psychiatric illness. Functional magnetic resonance imaging with musical stimuli was used to examine brain responses and effective connectivity in relation to individual differences in anhedonia. We found that trait anhedonia was negatively correlated with pleasantness ratings of music stimuli and with activation of key brain structures involved in reward processing, including nucleus accumbens (NAc), basal forebrain and hypothalamus which are linked by the medial forebrain bundle to the ventral tegmental area (VTA). Brain regions important for processing salient emotional stimuli, including anterior insula and orbitofrontal cortex were also negatively correlated with trait anhedonia. Furthermore, effective connectivity between NAc, VTA and paralimbic areas, that regulate emotional reactivity to hedonic stimuli, was negatively correlated with trait anhedonia. Our results indicate that trait anhedonia is associated with reduced reactivity and connectivity of mesolimbic and related limbic and paralimbic systems involved in reward processing. Critically, this association can be detected even in individuals without psychiatric illness. Our findings have important implications both for understanding the neurobiological basis of anhedonia and for the treatment of anhedonia in psychiatric disorders.
    Journal of Psychiatric Research 06/2013; · 4.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Generalized social anxiety disorder (gSAD) is characterized by exaggerated amygdala reactivity to social signals of threat, but if and how the amygdala interacts with functionally and anatomically connected prefrontal cortex (PFC) remains largely unknown. Recent evidence points to aberrant amygdala connectivity to medial PFC in gSAD at rest, but it is difficult to attribute functional relevance without the context of threat processing. Here, we address this by studying amygdala-frontal cortex connectivity during viewing of fearful faces and at rest in gSAD patients. METHODS: Twenty patients with gSAD and 17 matched healthy controls (HCs) participated in functional magnetic resonance imaging of an emotional face matching task and a resting state task. Functional connectivity and psychophysiological interaction analysis were used to assess amygdala connectivity. RESULTS: Compared to HCs, gSAD patients exhibited less connectivity between amygdala and the rostral anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) while viewing fearful faces. gSAD patients also showed less connectivity between amygdala and rostral ACC at rest in the absence of fearful faces. DLPFC connectivity was negatively correlated with LSAS(Fear) (where LSAS is Liebowitz Social Anxiety Scale). CONCLUSIONS: Task and rest paradigms provide unique and important information about discrete and overlapping functional networks. In particular, amygdala coupling to DLPFC may be a phasic abnormality, emerging only in the presence of a social predictor of threat, whereas amygdala coupling to the rostral ACC may reflect both phasic and tonic abnormalities. These findings prompt further studies to better delineate intrinsic and externally evoked brain connectivity in anxiety and depression in relation to amygdala dysfunction.
    Depression and Anxiety 11/2012; · 4.61 Impact Factor
  • Source
    Aneesha Badrinarayan, Katherine E Prater, Caitlin A Orsini
    Journal of Neuroscience 06/2012; 32(25):8431-3. · 6.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While resting state functional connectivity has been shown to decrease in patients with mild and/or moderate Alzheimer's disease, it is not yet known how functional connectivity changes in patients as the disease progresses. Furthermore, it has been noted that the default mode network is not as homogenous as previously assumed and several fractionations of the network have been proposed. Here, we separately investigated the modulation of 3 default mode subnetworks, as identified with group independent component analysis, by comparing Alzheimer's disease patients to healthy controls and by assessing connectivity changes over time. Our results showed decreased connectivity at baseline in patients versus controls in the posterior default mode network, and increased connectivity in the anterior and ventral default mode networks. At follow-up, functional connectivity decreased across all default mode systems in patients. Our results suggest that earlier in the disease, regions of the posterior default mode network start to disengage whereas regions within the anterior and ventral networks enhance their connectivity. However, as the disease progresses, connectivity within all systems eventually deteriorates.
    Neurobiology of aging 08/2011; 33(4):828.e19-30. · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clinical data suggest that abnormalities in the regulation of emotional processing contribute to the pathophysiology of generalized anxiety disorder, yet these abnormalities remain poorly understood at the neurobiological level. The authors recently reported that in healthy volunteers the pregenual anterior cingulate regulates emotional conflict on a trial-by-trial basis by dampening activity in the amygdala. The authors also showed that this process is specific to the regulation of emotional, compared to nonemotional, conflict. Here the authors examined whether this form of noninstructed emotion regulation is perturbed in generalized anxiety disorder. Seventeen patients with generalized anxiety disorder and 24 healthy comparison subjects underwent functional MRI while performing an emotional conflict task that involved categorizing facial affect while ignoring overlaid affect label words. Behavioral and neural measures were used to compare trial-by-trial changes in conflict regulation. Comparison subjects effectively regulated emotional conflict from trial to trial, even though they were unaware of having done so. By contrast, patients with generalized anxiety disorder were completely unable to regulate emotional conflict and failed to engage the pregenual anterior cingulate in ways that would dampen amygdalar activity. Moreover, performance and brain activation were correlated with symptoms and could be used to accurately classify the two groups. These data demonstrate that patients with generalized anxiety disorder show significant deficits in the noninstructed and spontaneous regulation of emotional processing. Conceptualization of anxiety as importantly involving abnormalities in emotion regulation, particularly a type occurring outside of awareness, may open up avenues for novel treatments, such as by targeting the medial prefrontal cortex.
    American Journal of Psychiatry 05/2010; 167(5):545-54. · 14.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Functional and structural maturation of networks comprised of discrete regions is an important aspect of brain development. The default-mode network (DMN) is a prominent network which includes the posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC), medial temporal lobes (MTL), and angular gyrus (AG). Despite increasing interest in DMN function, little is known about its maturation from childhood to adulthood. Here we examine developmental changes in DMN connectivity using a multimodal imaging approach by combining resting-state fMRI, voxel-based morphometry and diffusion tensor imaging-based tractography. We found that the DMN undergoes significant developmental changes in functional and structural connectivity, but these changes are not uniform across all DMN nodes. Convergent structural and functional connectivity analyses suggest that PCC-mPFC connectivity along the cingulum bundle is the most immature link in the DMN of children. Both PCC and mPFC also showed gray matter volume differences, as well as prominent macrostructural and microstructural differences in the dorsal cingulum bundle linking these regions. Notably, structural connectivity between PCC and left MTL was either weak or non-existent in children, even though functional connectivity did not differ from that of adults. These results imply that functional connectivity in children can reach adult-like levels despite weak structural connectivity. We propose that maturation of PCC-mPFC structural connectivity plays an important role in the development of self-related and social-cognitive functions that emerge during adolescence. More generally, our study demonstrates how quantitative multimodal analysis of anatomy and connectivity allows us to better characterize the heterogeneous development and maturation of brain networks.
    NeuroImage 04/2010; 52(1):290-301. · 6.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Little is known about the neural abnormalities underlying generalized anxiety disorder (GAD). Studies in other anxiety disorders have implicated the amygdala, but work in GAD has yielded conflicting results. The amygdala is composed of distinct subregions that interact with dissociable brain networks, which have been studied only in experimental animals. A functional connectivity approach at the subregional level may therefore yield novel insights into GAD. To determine whether distinct connectivity patterns can be reliably identified for the basolateral (BLA) and centromedial (CMA) subregions of the human amygdala, and to examine subregional connectivity patterns and potential compensatory amygdalar connectivity in GAD. Cross-sectional study. Academic medical center. Two cohorts of healthy control subjects (consisting of 17 and 31 subjects) and 16 patients with GAD. Functional connectivity with cytoarchitectonically determined BLA and CMA regions of interest, measured during functional magnetic resonance imaging performed while subjects were resting quietly in the scanner. Amygdalar gray matter volume was also investigated with voxel-based morphometry. Reproducible subregional differences in large-scale connectivity were identified in both cohorts of healthy controls. The BLA was differentially connected with primary and higher-order sensory and medial prefrontal cortices. The CMA was connected with the midbrain, thalamus, and cerebellum. In GAD patients, BLA and CMA connectivity patterns were significantly less distinct, and increased gray matter volume was noted primarily in the CMA. Across the subregions, GAD patients had increased connectivity with a previously characterized frontoparietal executive control network and decreased connectivity with an insula- and cingulate-based salience network. Our findings provide new insights into the functional neuroanatomy of the human amygdala and converge with connectivity studies in experimental animals. In GAD, we find evidence of an intra-amygdalar abnormality and engagement of a compensatory frontoparietal executive control network, consistent with cognitive theories of GAD.
    Archives of general psychiatry 12/2009; 66(12):1361-72. · 12.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Convergent data from various scientific approaches strongly implicate cerebellar systems in nonmotor functions. The functional anatomy of these systems has been pieced together from disparate sources, such as animal studies, lesion studies in humans, and structural and functional imaging studies in humans. To better define this distinct functional anatomy, in the current study we delineate the role of the cerebellum in several nonmotor systems simultaneously and in the same subjects using resting state functional connectivity MRI. Independent component analysis was applied to resting state data from two independent datasets to identify common cerebellar contributions to several previously identified intrinsic connectivity networks (ICNs) involved in executive control, episodic memory/self-reflection, salience detection, and sensorimotor function. We found distinct cerebellar contributions to each of these ICNs. The neocerebellum participates in (1) the right and left executive control networks (especially crus I and II), (2) the salience network (lobule VI), and (3) the default-mode network (lobule IX). Little to no overlap was detected between these cerebellar regions and the sensorimotor cerebellum (lobules V-VI). Clusters were also located in pontine and dentate nuclei, prominent points of convergence for cerebellar input and output, respectively. The results suggest that the most phylogenetically recent part of the cerebellum, particularly crus I and II, make contributions to parallel cortico-cerebellar loops involved in executive control, salience detection, and episodic memory/self-reflection. The largest portions of the neocerebellum take part in the executive control network implicated in higher cognitive functions such as working memory.
    Journal of Neuroscience 08/2009; 29(26):8586-94. · 6.91 Impact Factor

Publication Stats

617 Citations
61.69 Total Impact Points

Institutions

  • 2012
    • Concordia University–Ann Arbor
      Ann Arbor, Michigan, United States
  • 2011
    • University of Michigan
      Ann Arbor, Michigan, United States
  • 2009–2011
    • Stanford University
      • • Department of Neurology and Neurological Sciences
      • • Department of Psychiatry and Behavioral Sciences
      Stanford, CA, United States
    • Pierre and Marie Curie University - Paris 6
      Lutetia Parisorum, Île-de-France, France
  • 2010
    • Stanford Medicine
      • Department of Psychiatry and Behavioral Sciences
      Stanford, California, United States