Are you Charlotte E Farrar?

Claim your profile

Publications (2)6.14 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: The endothelial glycocalyx (EG) is an extracellular matrix (ECM) coating the luminal surface of the vascular endothelium. Hyaluronan (HA), a glycosaminoglycan, is an important constituent of the EG that regulates inflammation and repair. By providing a direct link between the endothelium and its ECM, HA contributes to maintaining glycocalyx integrity; emerging evidence indicates a close association between EG deterioration, concomitant loss of HA and the onset of endothelial dysfunction, a phenomenon that is involved in many disorders, including atherosclerosis, diabetes, hypertension and dyslipidemia. This review provides an overview of glycocalyx modification by pathological stimuli and considers the potential of the pharmacological targeting of HA synthesis and binding to limit endothelial dysfunction and to improve vasculoprotection.
    Current opinion in investigational drugs (London, England: 2000) 09/2010; 11(9):997-1006. · 3.55 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: COX (cyclo-oxygenase)-2 and members of the PAR (protease-activated receptor) family (PARs 1-4) are highly overexpressed in a number of angiogenesis-dependent pathologies, including advanced atherosclerosis and cancer. An appreciation of the potential role(s) of PARs and COX enzymes in physiological angiogenesis is, however, currently lacking. Exposure of human endothelial cells to serine proteases (e.g. thrombin) or to PAR-selective agonist peptides leads to a wide range of cellular responses, including enhanced expression of COX-2, and we have shown that this induction depends on activation of classic pro-inflammatory signalling elements [e.g. MAPKs (mitogen-activated protein kinases) and NF-kappaB (nuclear factor kappaB)]. Our current studies suggest that COX-2-derived mediators are important autocrine regulators of PAR-stimulated angiogenesis. This mechanism could help us to explain how this novel family of receptors couple vascular inflammation with repair and angiogenesis in health and disease.
    Biochemical Society Transactions 12/2009; 37(Pt 6):1179-83. · 2.59 Impact Factor