Maria Teresa Abreu-Blanco

Fred Hutchinson Cancer Research Center, Seattle, Washington, United States

Are you Maria Teresa Abreu-Blanco?

Claim your profile

Publications (9)46.55 Total impact

  • Source
    Maria Teresa Abreu-Blanco, Jeffrey M Verboon, Susan M Parkhurst
    [Show abstract] [Hide abstract]
    ABSTRACT: Cells heal disruptions in their plasma membrane using a sophisticated, efficient, and conserved response involving the formation of a membrane plug and assembly of an actomyosin ring. Here we describe how Rho family GTPases modulate the cytoskeleton machinery during single cell wound repair in the genetically amenable Drosophila embryo model. We find that Rho, Rac, and Cdc42 rapidly accumulate around the wound and segregate into dynamic, partially overlapping zones. Genetic and pharmacological assays show that each GTPase makes specific contributions to the repair process. Rho1 is necessary for myosin II activation, leading to its association with actin. Rho1, along with Cdc42, is necessary for actin filament formation and subsequent actomyosin ring stabilization. Rac is necessary for actin mobilization toward the wound. These GTPase contributions are subject to crosstalk among the GTPases themselves and with the cytoskeleton. We find Rho1 GTPase uses several downstream effectors, including Diaphanous, Rok, and Pkn, simultaneously to mediate its functions. Our results reveal that the three Rho GTPases are necessary to control and coordinate actin and myosin dynamics during single-cell wound repair in the Drosophila embryo. Wounding triggers the formation of arrays of Rho GTPases that act as signaling centers that modulate the cytoskeleton. In turn, coordinated crosstalk among the Rho GTPases themselves, as well as with the cytoskeleton, is required for assembly/disassembly and translocation of the actomyosin ring. The cell wound repair response is an example of how specific pathways can be activated locally in response to the cell's needs.
    Current biology: CB 12/2013; · 10.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The repair of injured tissue must occur rapidly to prevent microbial invasion and maintain tissue integrity. Epithelial tissues in particular, which serve as a barrier against the external environment, must repair efficiently in order to restore their primary function. Here we analyze the effect of different parameters on the epithelial wound repair process in the late stage Drosophila embryo using in vivo wound assays, expression of cytoskeleton and membrane markers, and mutant analysis. We define four distinct phases in the repair process-expansion, coalescence, contraction, and closure-and describe the molecular dynamics of each phase. Specifically, we find that myosin, E-cadherin, Echinoid, the plasma membrane, microtubules, and the Cdc42 small GTPase respond dynamically during wound repair, and demonstrate that perturbations of each of these components result in specific impairments to the wound healing process. Our results show that embryonic epithelial wound repair is mediated by two simultaneously acting mechanisms: crawling driven by cellular protrusions and actomyosin ring contraction along the leading edge of the wound.
    Journal of Cell Science 10/2012; · 5.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wiskott-Aldrich Syndrome (WASP) family proteins participate in many cellular processes involving rearrangements of the actin cytoskeleton. To the date, four WASP subfamily members have been described in Drosophila: Wash, WASp, SCAR, and Whamy. Wash, WASp, and SCAR are essential during early Drosophila development where they function in orchestrating cytoplasmic events including membrane-cytoskeleton interactions. A mutant for Whamy has not yet been reported. We generated monoclonal antibodies that are specific to Drosophila Wash, WASp, SCAR, and Whamy, and use these to describe their spatial and temporal localization patterns. Consistent with the importance of WASP family proteins in flies, we find that Wash, WASp, SCAR, and Whamy are dynamically expressed throughout oogenesis and embryogenesis. For example, we find that Wash accumulates at the oocyte cortex. WASp is highly expressed in the PNS, while SCAR is the most abundantly expressed in the CNS. Whamy exhibits an asymmetric subcellular localization that overlaps with mitochondria and is highly expressed in muscle. All four WASP family members show specific expression patterns, some of which reflect their previously known roles and others revealing new potential functions. The monoclonal antibodies developed offer valuable new tools to investigate how WASP family proteins regulate actin cytoskeleton dynamics.
    Developmental Dynamics 03/2012; 241(3):608-26. · 2.59 Impact Factor
  • Maria Teresa Abreu-Blanco, James J Watts, Jeffrey M Verboon, Susan M Parkhurst
    [Show abstract] [Hide abstract]
    ABSTRACT: Wound repair on the cellular and multicellular levels is essential to the survival of complex organisms. In order to avoid further damage, prevent infection, and restore normal function, cells and tissues must rapidly seal and remodel the wounded area. The cytoskeleton is an important component of wound repair in that it is needed for actomyosin contraction, recruitment of repair machineries, and cell migration. Recent use of model systems and high-resolution microscopy has provided new insight into molecular aspects of the cytoskeletal response during wound repair. Here we discuss the role of the cytoskeleton in single-cell, embryonic, and adult repair, as well as the striking resemblance of these processes to normal developmental events and many diseases.
    Cellular and Molecular Life Sciences CMLS 02/2012; 69(15):2469-83. · 5.62 Impact Factor
  • Source
    Maria Teresa Abreu-Blanco, Jeffrey M Verboon, Susan M Parkhurst
    [Show abstract] [Hide abstract]
    ABSTRACT: When single cells or tissues are injured, the wound must be repaired quickly in order to prevent cell death, loss of tissue integrity, and invasion by microorganisms. We describe Drosophila as a genetically tractable model to dissect the mechanisms of single-cell wound repair. By analyzing the expression and the effects of perturbations of actin, myosin, microtubules, E-cadherin, and the plasma membrane, we define three distinct phases in the repair process-expansion, contraction, and closure-and identify specific components required during each phase. Specifically, plasma membrane mobilization and assembly of a contractile actomyosin ring are required for this process. In addition, E-cadherin accumulates at the wound edge, and wound expansion is excessive in E-cadherin mutants, suggesting a role for E-cadherin in anchoring the actomyosin ring to the plasma membrane. Our results show that single-cell wound repair requires specific spatial and temporal cytoskeleton responses with distinct components and mechanisms required at different stages of the process.
    The Journal of Cell Biology 05/2011; 193(3):455-64. · 10.82 Impact Factor
  • Source
    Maria Teresa Abreu-Blanco, Jeffrey M Verboon, Susan M Parkhurst
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell wounding is a common event in the life of many cell types, and the capacity of the cell to repair day-to-day wear-and-tear injuries, as well as traumatic ones, is fundamental for maintaining tissue integrity. Cell wounding is most frequent in tissues exposed to high levels of stress. Survival of such plasma membrane disruptions requires rapid resealing to prevent the loss of cytosolic components, to block Ca(2+) influx and to avoid cell death. In addition to patching the torn membrane, plasma membrane and cortical cytoskeleton remodeling are required to restore cell function. Although a general understanding of the cell wound repair process is in place, the underlying mechanisms of each step of this response are not yet known. We have developed a model to study single cell wound repair using the early Drosophila embryo. Our system combines genetics and live imaging tools, allowing us to dissect in vivo the dynamics of the single cell wound response. We have shown that cell wound repair in Drosophila requires the coordinated activities of plasma membrane and cytoskeleton components. Furthermore, we identified an unexpected role for E-cadherin as a link between the contractile actomyosin ring and the newly formed plasma membrane plug.
    Bioarchitecture. 01/2011; 1(3):114-121.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The control of gene expression in the human parasite Leishmania occurs mainly at the post-transcriptional level. Nevertheless, basic cell processes such as ribosome biogenesis seem to be conserved. Mature ribosomal RNAs (rRNAs) are synthesized from typical RNA polymerase I (Pol I) promoters and processed by pathways analogous to other eukaryotes. To further understand Pol I transcription control in these parasites, we have analyzed transcription termination and processing of the rDNA in Leishmania amazonensis. 3'-end S1 mapping of rRNA precursors identified three termini, one corresponding to the mature 28S rRNA and two to the rDNA intergenic spacer (IGS), termed T1 and T2, for precursors which are 185 and 576 nucleotides longer, respectively. Both T1 and T2 are associated with conserved G + C rich elements that have the potential to form hairpin structures and T-rich clusters. We found that two fragments of 423 bp and 233 bp, flanking sites T1 and T2 respectively when placed upstream of the green fluorescent protein gene (GFP), negatively affected the Pol I-driven transcription of this gene, which suggests the presence of a transcription terminator element in these regions. Deletion analysis pointed to a CCCTTTT heptamer as part of the putative terminator and suggested that the hairpins are processing signals.
    Gene 11/2009; 451(1-2):15-22. · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wiskott-Aldrich Syndrome (WAS) family proteins are Arp2/3 activators that mediate the branched-actin network formation required for cytoskeletal remodeling, intracellular transport and cell locomotion. Wasp and Scar/WAVE, the two founding members of the family, are regulated by the GTPases Cdc42 and Rac, respectively. By contrast, linear actin nucleators, such as Spire and formins, are regulated by the GTPase Rho. We recently identified a third WAS family member, called Wash, with Arp2/3-mediated actin nucleation activity. We show that Drosophila Wash interacts genetically with Arp2/3, and also functions downstream of Rho1 with Spire and the formin Cappuccino to control actin and microtubule dynamics during Drosophila oogenesis. Wash bundles and crosslinks F-actin and microtubules, is regulated by Rho1, Spire and Arp2/3, and is essential for actin cytoskeleton organization in the egg chamber. Our results establish Wash and Rho as regulators of both linear- and branched-actin networks, and suggest an Arp2/3-mediated mechanism for how cells might coordinately regulate these structures.
    Development 09/2009; 136(16):2849-60. · 6.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two Trypanosoma cruzi-derived cloning vectors, pTREX-n and pBs:CalB1/CUB01, were used to drive the expression of green fluorescent protein (GFP) and DsRed in Trypanosoma rangeli Tejera, 1920, and Trypanosoma cruzi Chagas, 1909, isolates, respectively. Regardless of the species, group, or strain, parasites harboring the transfected constructs as either episomes or stable chromosomal integrations showed high-level expression of fluorescent proteins. Tagged flagellates of both species were used to experimentally infect Rhodnius prolixus Stal, 1953. In infected bugs, single or mixed infections of T. cruzi and T. rangeli displayed the typical cycle of each species, with no apparent interspecies interactions. In addition, infection of kidney monkey cells (LLC-MK2) with GFP-T. cruzi showed that the parasite retained its fluorescent tag while carrying out its life cycle within cultured cells. The use of GFP-tagged parasites as a tool for biological studies in experimental hosts is discussed, as is the application of this method for copopulation studies of same-host parasites.
    Journal of Medical Entomology 02/2005; 42(1):48-56. · 1.86 Impact Factor