Zina Korvasová

Palacký University of Olomouc, Olmütz, Olomoucký, Czech Republic

Are you Zina Korvasová?

Claim your profile

Publications (9)37.12 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Specific contrast ultrasound is widely applied in diagnostic procedures on humans but remains underused in veterinary medicine. The objective of this study was to evaluate the use of microbubble-based contrast for rapid ultrasonographic diagnosis of thrombosis in small animals, using male New Zealand white rabbits (average weight about 3.5 kg) as a model. It was hypothesized that the use of microbubble-based contrast agents will result in a faster and more precise diagnosis in our model of thrombosis. A pro-coagulant environment had been previously established by combining endothelial denudation and external vessel wall damage. Visualization of thrombi was achieved by application of contrast microbubbles [sterically stabilized, phospholipid-based microbubbles filled with sulfur hexafluoride (SF6) gas] and ultrasonography. As a result, rapid and clear diagnosis of thrombi in aorta abdominalis was achieved within 10 to 30 s (mean: 17.3 s) by applying microbubbles as an ultrasound contrast medium. In the control group, diagnosis was not possible or took 90 to 180 s. Therefore, sterically stabilized microbubbles were found to be a suitable contrast agent for the rapid diagnosis of thrombi in an experimental model in rabbits. This contrast agent could be of practical importance in small animal practice for rapid diagnosis of thrombosis.
    Canadian journal of veterinary research = Revue canadienne de recherche vétérinaire 04/2014; 78(2):133-9. · 1.19 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Lyme disease caused by spirochete Borrelia burgdorferi sensu lato, is a tick-born illness. If the infection is not eliminated by the host immune system and/or antibiotics, it may further disseminate and cause severe chronic complications. The immune response to Borrelia is mediated by phagocytic cells and by Borrelia-specific complement-activating antibodies associated with Th1 cell activation. A new experimental vaccine was constructed using non-lipidized form of recombinant B. burgdorferi s.s. OspC protein was anchored by metallochelating bond onto the surface of nanoliposomes containing novel nonpyrogenic lipophilized norAbuMDP analogues denoted MT05 and MT06. After i.d. immunization, the experimental vaccines surpassed Alum with respect to OspC-specific titers of IgG2a, IgG2b isotypes when MT06 was used and IgG3, IgM isotypes when MT05 was used. Both adjuvants exerted a high adjuvant effect comparable or better than MDP and proved themselves as nonpyrogenic.
    Journal of Controlled Release 02/2012; 160(2):374-81. · 7.63 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We designed and synthesised a series of new cationic lipids based on spermine linked to various hydrophobic anchors. These lipids could be potentially useful for the preparation of stable cationic liposomes intended for the construction of drug targeting systems applicable in the field of anticancer/antiviral therapy, vaccine carriers, and vectors for the gene therapy. Low in vitro toxicity was found for these compounds, especially for LD1, in several cell lines. The delivery of both a fluorescence marker (calcein) and antiviral drugs into cells has been achieved owing to a large extent of internalization of cationic liposomes (labelled by Lyssamine-Rhodamine PE or fluorescein-PE) as demonstrated by fluorescent microscopy and quantified by flow cytometry. The bovine herpes virus type 1 (BHV-1) virus infection in vitro model using MDBK cells was employed to study the effect of the established antiviral drug HPMPC (Cidofovir®) developed by Prof. A. Holý. Inhibition of BHV-1 virus replication was studied by quantitative RT-PCR and confirmed by both Hoffman modulation contrast microscopy and transmission electron microscopy. We found that in vitro antiviral activity of HPMPC was significantly improved by formulation in cationic liposomes, which decreased the viral replication by about 2 orders of magnitude.
    Journal of Controlled Release 02/2012; 160(2):330-8. · 7.63 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We designed and synthesised a series of new cationic lipids based on spermine linked to various hydrophobic anchors. These lipids could be potentially useful for the preparation of stable cationic liposomes intended for the construction of drug targeting systems applicable in the field of anticancer/antiviral therapy, vaccine carriers, and vectors for the gene therapy. Low in vitro toxicity was found for these compounds, especially for LD1, in several cell lines. The delivery of both a fluorescence marker (calcein) and antiviral drugs into cells has been achieved owing to a large extent of internalization of cationic liposomes (labelled by Lyssamine-Rhodamine PE or fluorescein-PE) as demonstrated by fluorescent microscopy and quantified by flow cytometry. The bovine herpes virus type 1 (BHV-1) virus infection in vitro model using MDBK cells was employed to study the effect of the established antiviral drug HPMPC (Cidofovir(R)) developed by Prof. A. Holy. Inhibition of BHV-1 virus replication was studied by quantitative RT-PCR and confirmed by both Hoffman modulation contrast microscopy and transmission electron microscopy. We found that in vitro antiviral activity of HPMPC was significantly improved by formulation in cationic liposomes, which decreased the viral replication by about 2 orders of magnitude.
    J Control Release. 01/2012; 160(2):330-8.
  • [show abstract] [hide abstract]
    ABSTRACT: The histidine-metallochelating lipid complex is one of the smallest high affinity binding units used as tools for rapid noncovalent binding of histidine tagged molecules, especially recombinant proteins. The advantage of metallochelating complex over protein-ligand complexes (e.g., streptavidine-biotin, glutathiontransferase-glutathion) consists in its very low immunogenicity, if any. This concept for the construction of surface-modified metallochelating microbubbles was proved with recombinant green fluorescent protein (rGFP) containing 6His-tag. This protein is easy to be detected by various fluorescence techniques as flow cytometry and confocal microscopy. Microbubbles (MB) composed of DPPC with various contents of metallochelating lipid DOGS-NTA-Ni were prepared by intensive shaking of the liposome suspension under the atmosphere of sulfur hexafluoride. For this purpose, the instrument 3M ESPE CapMix was used. Various techniques (static light scattering, flow cytometry, and optical microscopy) were compared and used for the measurements of the size distribution of MB. All three methods demonstrated that the prepared MB were homogeneous in their size, and the mean diameter of the MB in various batches was within the range of 2.1-2.8 μm (the size range of 1-10 μm). The presence of large MB (8-10 μm) was marginal. Counting of MB revealed that the average amount of MB prepared of 10 mg of phospholipid equaled approximately 10(9) MB/mL. Lyophilized MB were prepared with saccharose as a cryoprotectant. These MB were shown to be stable both in vitro (the estimated half-live of the MB in bovine serum at 37 °C was 3-7 min) and in vivo (mouse). The stability of the MB was affected by molar content of DOGS-NTA-Ni. DPPC-based metallochelating MB provided a clear and very contrast image of the ventricular cavity soon after the injection. Site selective and stable binding of rGFP-HisTag (as a model of His-tagged protein) onto the surface of metallochelating MB was demonstrated by confocal microscopy.
    Langmuir 03/2011; 27(8):4829-37. · 4.19 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Liposomes represent a biocompatible platform for the construction of self-assembling proteoliposomes using nickel or zinc metallochelation. Potential applications of such structures consist in the development of new biocompatible vaccination nanoparticles and drug delivery nanoparticle systems. Here, we describe the design and construction of a flow-through ultrafiltration cell suitable for the preparation of monodisperse liposomes enabled for metallochelation and, hence, the formation of proteoliposomes. The linkage of the cell with a fast protein liquid chromatography system facilitates automation of the procedure, which fits the criteria for upscaling. Proof-of-concept experiments are performed using a mixture of egg phosphatidyl choline and nickel-chelating lipid DOGS-NTA-Ni (1,2-dioleoyl-sn-glycero-3-{[N(5-amino-1-carboxypentyl)iminodiacetic acid]succinyl}(nickel salt)) to formulate proteoliposomes with proteins attached by metallochelation, including histidine (His)-tagged recombinant green fluorescent protein and rgp120 (derived from HIV-1 Env). These model proteoliposomes are characterized by gel permeation chromatography and by dynamic light scattering. Transmission electron microscopy and immunogold staining are used to characterize surface-bound proteins, revealing the tendency of rgp120 to form microdomains on liposome surfaces. These microdomains possess a two-dimensional crystal-like structure that is seen more precisely by atomic force microscopy.
    Analytical Biochemistry 01/2011; 408(1):95-104. · 2.58 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Hsp90-CA is present in cell wall of Candida pseudohyphae or hyphae-typical pathogenic morphotype for both systemic and mucosal Candida infections. Heat shock protein from Candida albicans (hsp90-CA) is an important target for protective antibodies during disseminated candidiasis of experimental mice and human. His-tagged protein rHsp90 was prepared and used as the antigen for preparation of experimental recombinant liposomal vaccine. Nickel-chelating liposomes (the size around 100nm, PDI≤0.1) were prepared from the mixture of egg phosphatidyl choline and nickel-chelating lipid DOGS-NTA-Ni (molar ratio 95:5%) by hydration of lipid film and extrusion methods. New non-pyrogenic hydrophobised derivative of MDP (C18-O-6-norAbuMDP) was incorporated into liposomes as adjuvans. rHsp90 was attached onto the surface of metallochelating liposomes by metallochelating bond and the structure of these proteoliposomes was studied by dynamic light scattering, AF microscopy, TEM and GPC. The liposomes with surface-exposed C18-O-6-norAbuMDP were well recognised and phagocyted by human dendritic cells in vitro. In vivo the immune response towards this experimental vaccine applied in mice (i.d.) demonstrated both TH1 and TH2 response comparable to FCA, but without any side effects. Metallochelating liposomes with lipophilic derivatives of muramyl dipeptide represent a new biocompatible platform for construction of experimental recombinant vaccines and drug-targeting systems.
    Journal of Controlled Release 01/2011; 151(2):193-201. · 7.63 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Paclitaxel (PTX) is approved for the treatment of ovarian and breast cancer. The commercially available preparation of PTX, Cremophor EL® is associated with hypersensitivity reactions in spite of a suitable premedication. In general, the developed liposomal PTX formulations are troubled with low PTX encapsulation capacity (maximal content, 3 mol%) and accompanied by PTX crystallisation. The application of “pocket-forming” lipids significantly increased the encapsulation capacity of PTX in the liposomes up to 10 mol%. Stable lyophilised preparation of PTX (7 mol%) encapsulated in the liposomes composed of SOPC/POPG/MOPC (molar ratio, 60:20:20) doped with 5 mol% vitamin E had the size distribution of 180–190 nm (PDI, 0.1) with ζ-potential of −31 mV. Sucrose was found to be a suitable cryoprotectant at the lipid:sugar molar ratios of 1:5–1:10. This liposomal formulation did not show any evidence of toxicity in C57BL/6 mice treated with the highest doses of PTX (100 mg/kg administered as a single dose and 150 mg/kg as a cumulative dose applied in three equivalent doses in 48-h intervals). A dose-dependent anticancer effect was found in both hollow fibre implants and syngenic B16F10 melanoma mouse tumour models. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99: 2309–2319, 2010
    Journal of Pharmaceutical Sciences 11/2009; 99(5):2309 - 2319. · 3.13 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Paclitaxel (PTX) is approved for the treatment of ovarian and breast cancer. The commercially available preparation of PTX, Cremophor EL(R) is associated with hypersensitivity reactions in spite of a suitable premedication. In general, the developed liposomal PTX formulations are troubled with low PTX encapsulation capacity (maximal content, 3 mol%) and accompanied by PTX crystallisation. The application of "pocket-forming" lipids significantly increased the encapsulation capacity of PTX in the liposomes up to 10 mol%. Stable lyophilised preparation of PTX (7 mol%) encapsulated in the liposomes composed of SOPC/POPG/MOPC (molar ratio, 60:20:20) doped with 5 mol% vitamin E had the size distribution of 180-190 nm (PDI, 0.1) with zeta-potential of -31 mV. Sucrose was found to be a suitable cryoprotectant at the lipid:sugar molar ratios of 1:5-1:10. This liposomal formulation did not show any evidence of toxicity in C57BL/6 mice treated with the highest doses of PTX (100 mg/kg administered as a single dose and 150 mg/kg as a cumulative dose applied in three equivalent doses in 48-h intervals). A dose-dependent anticancer effect was found in both hollow fibre implants and syngenic B16F10 melanoma mouse tumour models.
    Journal of Pharmaceutical Sciences 11/2009; 99(5):2309-19. · 3.13 Impact Factor