Josée Hébert

University of Manitoba, Winnipeg, Manitoba, Canada

Are you Josée Hébert?

Claim your profile

Publications (4)18.96 Total impact

  • Source
    Oumar Samassekou, Abba Malina, Josée Hébert, Ju Yan
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: The predominant mechanism by which human tumors maintain telomere length is via telomerase. In ~10% of tumor samples, however, telomere length is conserved, despite no detectable telomerase activity, in part through activation of the alternative lengthening of telomeres (ALT) pathway. METHODS: We studied the circular extra-chromosomal telomeric repeat (ECTR), an ALT hallmark, and telomerase activity in 24 chronic myeloid leukemia (CML) patients in chronic phase (CP). RESULTS: We identified the presence of ECTR in primary leukemia cells from some of these samples, which indicates the possible involvement of an ALT mechanism. Moreover, we found that some samples exhibited both circular ECTR and telomerase activities, suggesting that both mechanisms can contribute to the onset of CML. CONCLUSION: We propose that ALT or the combined activities of ALT and telomerase might be required for the early stages of leukemogenesis. These findings shed new light into the oncogenic pathways responsible for the maintenance of telomere length in leukemia, which will ultimately determine the effectiveness of anti-telomerase-based treatment protocols.
    Journal of Hematology & Oncology 04/2013; 6(1):26. · 4.46 Impact Factor
  • Source
    Oumar Samassekou, Josée Hébert, Sabine Mai, Ju Yan
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic myeloid leukemia (CML) is a hematologic cancer characterized by the proliferation of myeloid cells and the translocation between chromosomes 9 and 22, [t(9;22)(q34.1;q11.2)]. At the chronic phase (CP), CML cells present longer telomeres than at the other clinical phases, display arm-specific maintenance of individual telomere lengths, and are chromosomally stable. We asked whether an alteration of nuclear organization of telomeres, which is associated with genomic instability, occurs in CML cells at the CP. We used fluorescent in situ hybridization of telomeres combined with three-dimensional (3D) quantification to study the nuclear telomeric architecture of CML cells at the CP. We found that cells can exhibit high telomere numbers, different telomere distributions, and alterations in peripheral or central nuclear location of telomeres. Also, we show that CML cells can be categorized in two groups according to the number of their telomere aggregates (TAs). We propose that the presence of high TAs in some samples is associated with the increased genomic instability and could be an indication of the clinical transitional phase. Also, alterations of nuclear organization of telomeres at the CP confirm that nuclear remodeling of telomeres can occur at an early clinical stage of a cancer. © 2013 Wiley Periodicals, Inc.
    Genes Chromosomes and Cancer 01/2013; · 3.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies demonstrated that critically shortened telomere lengths correlate with the chromosome instability in carcinogenesis. However, little has been noticed regarding the correlation of long telomeres at specific chromosomes with malignant disorders. We studied relative telomere lengths (RTLs) for individual chromosomes using the quantitative fluorescence in situ hybridization technique in a cohort of 32 patients with chronic myeloid leukemia (CML) and 32 normal samples. We found that telomeres at some specific chromosome arms remain well maintained or even lengthened in a high frequency (27/32) of leukemia cases. In particular, 10 chromosome arms, 4q, 5p, 7q, 11p, 13p, 13q, 14p, 15p, 18p, and Xp, with long telomeres were consistently identified in different samples, and six of them (4q, 5p, 13p, 13q, 14p, and Xp) with relatively long telomeres were also observed in normal samples, but they appeared in lower occurrence rate and shorter RTL than in CML samples. Our results strongly indicate the presence of a special leukemia cell population, or a clone, originated from a common progenitor that is characterized with chromosome arm-specific long telomeres. We suggest that relatively long telomeres located at key chromosomes could be preferentially maintained or further elongated during the early stage of malignant transformation.
    Neoplasia (New York, N.Y.) 06/2011; 13(6):550-60. · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic myeloid leukemia (CML) is a neoplasia characterized by proliferation of a myeloid cell lineage and chromosome translocation t(9;22) (q34;q11.2). As in the case of most cancers, the average telomere length in CML cells is shorter than that in normal blood cells. However, there are currently no data available concerning specific individual telomere length in CML. Here, we studied telomere length on each chromosome arm of CML cells. In situ hybridization with peptide nucleic acid probes was performed on CML cells in metaphase. The fluorescence intensity of each specific telomere was converted into kilobases according to the telomere restriction fragment results for each sample. We found differences in telomere length between short arm ends and long arm ends. We observed recurrent telomere length changes as well as telomere length maintenance and elongation in some individual telomeres. We propose a possible involvement of individual telomere length changes to some chromosomal abnormalities in CML. We suggest that individual telomere length maintenance is chromosome arm-specific associated with leukemia cells.
    Neoplasia (New York, N.Y.) 11/2009; 11(11):1146-54. · 5.48 Impact Factor

Publication Stats

28 Citations
18.96 Total Impact Points

Institutions

  • 2013
    • University of Manitoba
      • Manitoba Institute of Cell Biology
      Winnipeg, Manitoba, Canada
    • Hôpital Maisonneuve-Rosemont
      Montréal, Quebec, Canada
  • 2009–2011
    • Université de Sherbrooke
      • Division of Genetics
      Sherbrooke, Quebec, Canada