Hee-Sool Rho

North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States

Are you Hee-Sool Rho?

Claim your profile

Publications (18)149.14 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Phosphorylation plays a very important role in cellular signal transduction. Current phosphorylation-related databases often focus on the phosphorylation sites, which are mainly determined by mass spectrometry. Here, we present PhosphoNetworks, a phosphorylation database built upon a high-resolution map of phosphorylation networks. This high-resolution map of phosphorylation networks provides not only the kinase-substrate relationships (KSRs), but also the specific phosphorylation sites on which the kinases act on the substrates. The database contains the most comprehensive dataset for KSRs, including the relationships from a recent high throughput project for identification of KSRs using protein microarrays, as well as known KSRs curated from the literature. In addition, the database also includes several analytical tools for dissecting phosphorylation networks. PhosphoNetworks is expected to play a prominent role in proteomics and phosphorylation related disease research. http://www.phosphonetworks.org CONTACT: jiang.qian@jhmi.edu.
    Bioinformatics 11/2013; · 5.47 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Because most efforts to understand the molecular mechanisms underpinning fungal pathogenicity have focused on studying the function and role of individual genes, relatively little is known about how transcriptional machineries globally regulate and coordinate the expression of a large group of genes involved in pathogenesis. Using quantitative real-time PCR, we analyzed the expression patterns of 206 transcription factor (TF) genes in the rice blast fungus Magnaporthe oryzae under 32 conditions, including multiple infection-related developmental stages and various abiotic stresses. The resulting data, which are publicly available via an online platform, provided new insights into how these TFs are regulated and potentially work together to control cellular responses to a diverse array of stimuli. High degrees of differential TF expression were observed under the conditions tested. More than 50% of the 206 TF genes were up-regulated during conidiation and/or in conidia. Mutations in ten conidiation-specific TF genes caused defects in conidiation. Expression patterns in planta were similar to those under oxidative stress conditions. Mutants of in planta inducible genes not only exhibited sensitive to oxidative stress but also failed to infect rice. These experimental validations clearly demonstrated the value of TF expression patterns in predicting the function of individual TF genes. The regulatory network of TF genes revealed by this study provides a solid foundation for elucidating how M. oryzae regulates its pathogenesis, development, and stress responses.
    PLoS Pathogens 06/2013; 9(6):e1003350. · 8.14 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The landscape of human phosphorylation networks has not been systematically explored, representing vast, unchartered territories within cellular signaling networks. Although a large number of in vivo phosphorylated residues have been identified by mass spectrometry (MS)-based approaches, assigning the upstream kinases to these residues requires biochemical analysis of kinase-substrate relationships (KSRs). Here, we developed a new strategy, called CEASAR, based on functional protein microarrays and bioinformatics to experimentally identify substrates for 289 unique kinases, resulting in 3656 high-quality KSRs. We then generated consensus phosphorylation motifs for each of the kinases and integrated this information, along with information about in vivo phosphorylation sites determined by MS, to construct a high-resolution map of phosphorylation networks that connects 230 kinases to 2591 in vivo phosphorylation sites in 652 substrates. The value of this data set is demonstrated through the discovery of a new role for PKA downstream of Btk (Bruton's tyrosine kinase) during B-cell receptor signaling. Overall, these studies provide global insights into kinase-mediated signaling pathways and promise to advance our understanding of cellular signaling processes in humans.
    Molecular Systems Biology 04/2013; 9:655. · 11.34 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Phosphorylation-mediated signaling plays a crucial role in nearly every aspect of cellular physiology. A recent study based on protein microarray experiments identified a large number of kinase-substrate relationships (KSRs), and built a comprehensive and reliable phosphorylation network in humans. Analysis of this network, in conjunction with additional resources, revealed several key features. First, comparison of the human and yeast phosphorylation networks uncovered an evolutionarily conserved signaling backbone dominated by kinase-to-kinase relationships. Second, although most of the KSRs themselves are not conserved, the functions enriched in the substrates for a given kinase are often conserved. Third, the prevalence of kinase-transcription factor regulatory modules suggests that phosphorylation and transcriptional regulatory networks are inherently wired together to form integrated regulatory circuits. Overall, the phosphorylation networks described in this work promise to offer new insights into the properties of kinase signaling pathways, at both the global and the protein levels. This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology & Clinical Implications.
    Biochimica et Biophysica Acta 03/2013; · 4.66 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The Kaposi sarcoma associated herpesvirus (KSHV) latency associated nuclear antigen (LANA) is expressed in all KSHV associated malignancies and is essential for maintenance of KSHV genomes in infected cells. To identify kinases that are potentially capable of modifying LANA, in vitro phosphorylation assays were performed using an Epstein Barr virus plus LANA protein microarray and 268 human kinases purified in active form from yeast. Interestingly, of the Epstein-Barr virus proteins on the array, the EBNA1 protein had the most similar kinase profile to LANA. We focused on nuclear kinases and on the N-terminus of LANA (amino acids 1-329) that contains the LANA chromatin binding domain. Sixty-three nuclear kinases phosphorylated the LANA N-terminus. Twenty-four nuclear kinases phosphorylated a peptide covering the LANA chromatin binding domain (amino acids 3-21). Alanine mutations of serine 10 and threonine 14 abolish or severely diminish chromatin and histone binding by LANA. However, conversion of these residues to the phosphomimetic glutamic acid restored histone binding suggesting that phosphorylation of serine 10 and threonine 14 may modulate LANA function. Serine 10 and threonine 14 were validated as substrates of casein kinase 1, PIM1, GSK-3 and RSK3 kinases. Short-term treatment of transfected cells with inhibitors of these kinases found that only RSK inhibition reduced LANA interaction with endogenous histone H2B. Extended treatment of PEL cell cultures with RSK inhibitor caused a decrease in LANA protein levels associated with p21 induction and a loss of PEL cell viability. The data indicate that RSK phosphorylation affects both LANA accumulation and function.
    PLoS Pathogens 10/2012; 8(10):e1002972. · 8.14 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Protein serine-threonine kinase casein kinase II (CK2) is involved in a myriad of cellular processes including cell growth and proliferation through its phosphorylation of hundreds of substrates, yet how CK2 function is regulated is poorly understood. Here we report that the CK2 catalytic subunit CK2α is modified by O-linked β-N-acetyl-glucosamine (O-GlcNAc) on Ser347, proximal to a cyclin-dependent kinase phosphorylation site (Thr344). We use protein semisynthesis to show that phosphorylation of Thr344 increases the cellular stability of CK2α by strengthening its interaction with Pin1, whereas glycosylation of Ser347 seems to be antagonistic to Thr344 phosphorylation and permissive to proteasomal degradation. By performing kinase assays with site-specifically phospho- and glyco-modified CK2α in combination with CK2β and Pin1 binding partners on human protein microarrays, we show that the kinase substrate selectivity of CK2 is modulated by these specific post-translational modifications. This study suggests how a promiscuous protein kinase can be regulated at multiple levels to achieve particular biological outputs.
    Nature Chemical Biology 01/2012; 8(3):262-9. · 12.95 Impact Factor
  • Jun Seop Jeong, Hee-Sool Rho, Heng Zhu
    [show abstract] [hide abstract]
    ABSTRACT: Functional protein microarrays offer a versatile platform to address diverse biological questions. Printing individually purified proteins in a spatially addressable format makes it straightforward to investigating binary interactions. To connect substrates to their upstream modifying enzymes, such as kinases, ubiqutin (Ub) ligases, SUMOylation E3 ligases, and acetyltransferases, is an especially daunting task using traditional methodologies. In recent years, regulation via various types of posttranslational modifications (PTMs) on lysine residues is emerging as an important mechanism(s) underlining diverse biological -processes. Our group has been developing and applying functional protein microarrays constructed for different model organisms to globally identify enzyme-substrate interactions with a focus on lysine PTMs. In particular, we have characterized the pleiotropic functions of a ubiquitin E3 ligase, Rsp5, via identification of its downstream substrates using a yeast proteome chip. Also, we have identified nonhistone substrates of the acetyltransferase NuA4 complex in yeast, and revealed that reversible acetylation on a metabolic enzyme affects a glucose metabolism and contributes to life span. In this chapter, we will provide detailed protocols for the investigation of ubiquitylation and acetylation. These protocols are generally applicable for different organisms.
    Methods in molecular biology (Clifton, N.J.) 01/2011; 723:213-23.
  • [show abstract] [hide abstract]
    ABSTRACT: Calcium plays a critical role in a variety of cellular processes in cells. However, relatively little is known about the biological effects of Ca²+ signaling on morphogenesis and pathogenesis in the rice blast fungus Magnaporthe oryzae compared to other signaling pathways. We have previously demonstrated that MoPLC1-mediated calcium regulation is important for infection-related development and pathogenicity in M. oryzae. In the present study, four genes encoding phospholipase C (PLC) isozymes (MoPLC2 to MoPLC5), which differ from MoPLC1 in their domain organization, were additionally identified. The C2 domain involved in Ca²+-dependent membrane binding is found only in MoPLC2 and MoPLC3. Detailed functional analysis using deletion mutants for MoPLC2 and MoPLC3 indicated that MoPLC2 and MoPLC3 play essential roles in development. The two deletion mutants for MoPLC2 and MoPLC3 showed reduced conidiation and a defect in appressorium-mediated penetration. Reintroduction of the genes restored defects of ΔMoplc2 and ΔMoplc3. Notably, ΔMoplc2 and ΔMoplc3 mutants developed multiple appressoria on separate germ tubes of a conidium, indicating that MoPLC2- and MoPLC3-regulated signaling suppresses a feedback loop of a pathway for appressorial development. The similarity in phenotypic defects between the two mutants indicates that both MoPLC2 and MoPLC3 are important for regulation of appropriate levels of signaling molecules in a similar manner. Comparative analysis indicated that the two MoPLCs-mediated signaling pathways have interrelated, but distinct, roles in the development of M. oryzae.
    Fungal Genetics and Biology 01/2011; 48(4):445-55. · 3.26 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The appropriate development of conidia and appressoria is critical in the disease cycle of many fungal pathogens, including Magnaporthe oryzae. A total of eight genes (MoHOX1 to MoHOX8) encoding putative homeobox transcription factors (TFs) were identified from the M. oryzae genome. Knockout mutants for each MoHOX gene were obtained via homology-dependent gene replacement. Two mutants, DeltaMohox3 and DeltaMohox5, exhibited no difference to wild-type in growth, conidiation, conidium size, conidial germination, appressorium formation, and pathogenicity. However, the DeltaMohox1 showed a dramatic reduction in hyphal growth and increase in melanin pigmentation, compared to those in wild-type. DeltaMohox4 and DeltaMohox6 showed significantly reduced conidium size and hyphal growth, respectively. DeltaMohox8 formed normal appressoria, but failed in pathogenicity, probably due to defects in the development of penetration peg and invasive growth. It is most notable that asexual reproduction was completely abolished in DeltaMohox2, in which no conidia formed. DeltaMohox2 was still pathogenic through hypha-driven appressoria in a manner similar to that of the wild-type. However, DeltaMohox7 was unable to form appressoria either on conidial germ tubes, or at hyphal tips, being non-pathogenic. These factors indicate that M. oryzae is able to cause foliar disease via hyphal appressorium-mediated penetration, and MoHOX7 is mutually required to drive appressorium formation from hyphae and germ tubes. Transcriptional analyses suggest that the functioning of M. oryzae homeobox TFs is mediated through the regulation of gene expression and is affected by cAMP and Ca(2+) signaling and/or MAPK pathways. The divergent roles of this gene set may help reveal how the genome and regulatory pathways evolved within the rice blast pathogen and close relatives.
    PLoS Genetics 12/2009; 5(12):e1000757. · 8.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Protein-DNA interactions (PDIs) mediate a broad range of functions essential for cellular differentiation, function, and survival. However, it is still a daunting task to comprehensively identify and profile sequence-specific PDIs in complex genomes. Here, we have used a combined bioinformatics and protein microarray-based strategy to systematically characterize the human protein-DNA interactome. We identified 17,718 PDIs between 460 DNA motifs predicted to regulate transcription and 4,191 human proteins of various functional classes. Among them, we recovered many known PDIs for transcription factors (TFs). We identified a large number of unanticipated PDIs for known TFs, as well as for previously uncharacterized TFs. We also found that over three hundred unconventional DNA-binding proteins (uDBPs)--which include RNA-binding proteins, mitochondrial proteins, and protein kinases--showed sequence-specific PDIs. One such uDBP, ERK2, acts as a transcriptional repressor for interferon gamma-induced genes, suggesting important biological roles for such proteins.
    Cell 10/2009; 139(3):610-22. · 31.96 Impact Factor
  • Hee-Sool Rho, Junhyun Jeon, Yong-Hwan Lee
    [show abstract] [hide abstract]
    ABSTRACT: Calcium signalling has profound implications in the fungal infection of plants and animals, during which a series of physiological and morphological transitions are required. In this article, using a model fungal pathogen, Magnaporthe oryzae, we demonstrate that the regulation of the intracellular calcium concentration ([Ca(2+)](int)) is essential for fungal development and pathogenesis. Imaging of [Ca(2+)](int) showed that infection-specific morphogenesis is highly correlated with the spatiotemporal regulation of calcium flux. Deletion of the fungal phospholipase C gene (M. oryzae phospholipase C 1, MoPLC1) suppressed calcium flux, resulting in a fungus defective in developmental steps, including appressorium formation and pathogenicity. Surprisingly, the PLC-delta1 gene of mouse was able to functionally substitute for MoPLC1 by restoring the calcium flux, suggesting the evolutionary conservation of the phospholipase C-mediated regulation of calcium flux. Our results reveal that MoPLC1 is a conserved modulator of calcium flux that is essential for the regulation of key steps in fungal development and pathogenesis.
    Molecular Plant Pathology 06/2009; 10(3):337-46. · 3.88 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: In the post genome era, a major challenge is to understand the transcriptional control of each gene and the network of interactions control growth, development, and differentiation. The genome sequence of many fungi is now available, as are growing data sets of large-scale transcriptional studies. Microarray analysis reveals that specific sets of genes are coordinately regulated, presumably via the action of largely uncharacterized transcription factors. Those studies provide a clue to the function of co-regulated genes as well a means to categorize groups of genes. However, the ultimate objective is to be able to model the underlying pattern of associations that provides the transcriptional control. The finished genome assembly has allowed us to annotate a relatively complete list of proteins associated with transcription initiation and/or regulation. Using emerging technologies initially designed to study humans and model systems like yeast, we can now identify protein interactions that lead to transcription factor regulation as well as reveal the specific nucleotide binding sites for any DNA binding protein. Specifically, using protein chips and ChIP-chip studies, we can begin to examine transcriptional circuits that regulate the infection and development processes in this important plant pathogen.
    12/2008: pages 73-82;
  • [show abstract] [hide abstract]
    ABSTRACT: Insertional mutagenesis of Magnaporthe oryzae led to the identification of MCK1, a pathogenicity gene predicted to encode mitogen-activated protein kinase kinase kinase (MAPKKK) homologous to BCK1 in Saccharomyces cerevisiae. Targeted disruption of MCK1 resulted in the fungus undergoing autolysis and showing hypersensitivity to cell-wall-degrading enzyme. The mck1 produced significantly reduced numbers of conidia and developed appressoria in a slightly retarded manner compared with the wild type. Appressorium of the mck1 mutant was unable to penetrate into plant tissues, thereby rendering the mutant nonpathogenic. Cytorrhysis assay and monitoring of lipid mobilization suggested that the appressorial wall was altered, presumably affecting the level of turgor pressure within appressorium. Furthermore, the mck1 mutant failed to grow inside plant tissue. Complementation of the mutated gene restored its ability to cause disease symptoms, demonstrating that MCK1 is required for fungal pathogenicity. Taken together, our results suggest that MCK1 is an MAPKKK involved in maintaining cell wall integrity of M. oryzae, and that remodeling of the cell wall in response to host environments is essential for fungal pathogenesis.
    Molecular Plant-Microbe Interactions 06/2008; 21(5):525-34. · 4.31 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Agrobacterium tumefaciens-mediated transformation (ATMT) is becoming an effective system as an insertional mutagenesis tool in filamentous fungi. We developed and optimized ATMT for two Colletotrichum species, C. falcatum and C. acutatum, which are the causal agents of sugarcane red rot and pepper anthracnose, respectively. A. tumefaciens strain SK1044, carrying a hygromycin phosphotransferase gene (hph) and a green fluorescent protein (GFP) gene, was used to transform the conidia of these two Colletotrichum species. Transformation efficiency was correlated with cocultivation time and bacterial cell concentration and was higher in C. falcatum than in C. acutatum. Southern blot analysis indicated that about 65% of the transformants had a single copy of the T-DNA in both C. falcatum and C. acutatum and that T-DNA integrated randomly in both fungal genomes. T-DNA insertions were identified in transformants through thermal asymmetrical interlaced PCR (TAIL-PCR) followed by sequencing. Our results suggested that ATMT can be used as a molecular tool to identify and characterize pathogenicity-related genes in these two economically important Colletotrichum species.
    Journal of Microbiology and Biotechnology 03/2008; 18(2):234-41. · 1.40 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Agrobacterium tumefaciens-mediated transformation (ATMT) has become a prevalent tool for functional genomics of fungi, but our understanding of T-DNA integration into the fungal genome remains limited relative to that in plants. Using a model plant-pathogenic fungus, Magnaporthe oryzae, here we report the most comprehensive analysis of T-DNA integration events in fungi and the development of an informatics infrastructure, termed a T-DNA analysis platform (TAP). We identified a total of 1110 T-DNA-tagged locations (TTLs) and processed the resulting data via TAP. Analysis of the TTLs showed that T-DNA integration was biased among chromosomes and preferred the promoter region of genes. In addition, irregular patterns of T-DNA integration, such as chromosomal rearrangement and readthrough of plasmid vectors, were also observed, showing that T-DNA integration patterns into the fungal genome are as diverse as those of their plant counterparts. However, overall the observed junction structures between T-DNA borders and flanking genomic DNA sequences revealed that T-DNA integration into the fungal genome was more canonical than those observed in plants. Our results support the potential of ATMT as a tool for functional genomics of fungi and show that the TAP is an effective informatics platform for handling data from large-scale insertional mutagenesis.
    Molecular Microbiology 11/2007; 66(2):371-82. · 4.96 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Rapid translation of genome sequences into meaningful biological information hinges on the integration of multiple experimental and informatics methods into a cohesive platform. Despite the explosion in the number of genome sequences available, such a platform does not exist for filamentous fungi. Here we present the development and application of a functional genomics and informatics platform for a model plant pathogenic fungus, Magnaporthe oryzae. In total, we produced 21,070 mutants through large-scale insertional mutagenesis using Agrobacterium tumefaciens-mediated transformation. We used a high-throughput phenotype screening pipeline to detect disruption of seven phenotypes encompassing the fungal life cycle and identified the mutated gene and the nature of mutation for each mutant. Comparative analysis of phenotypes and genotypes of the mutants uncovered 202 new pathogenicity loci. Our findings demonstrate the effectiveness of our platform and provide new insights on the molecular basis of fungal pathogenesis. Our approach promises comprehensive functional genomics in filamentous fungi and beyond.
    Nature Genetics 05/2007; 39(4):561-5. · 35.21 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: A better understanding of fungal biology will facilitate judicious use of beneficial fungi and will also advance our efforts to control pathogenic fungi. Molecular studies of fungal biology have been greatly aided by transformation-mediated mutagenesis techniques. Transformation via nonhomologous integration of plasmid DNA bearing a selectable marker (e.g., antibiotic resistance gene) has been widely used for the random insertional mutagenesis of fungi - as an alternative to chemical and radiation mutagens - mainly because the integration of plasmid into the genome provides a convenient tag for subsequent identification and isolation of the mutated gene. Homologous recombination between a target gene on the chromosome and the introduced DNA carrying its mutant allele results in targeted gene knock-out. An important advance in fungal transformation methodology is the development of Agrobacterium tumefaciens-mediated transformation (ATMT) protocols for fungi. ATMT has been successfully applied to a phylogenetically diverse group of fungi and offers a number of advantages over conventional transformation techniques in both the random insertional mutagenesis and targeted gene knock-out. In this chapter, we describe ATMT protocols and vectors for fungal gene manipulation using two plant pathogenic fungi, Magnaporthe grisea and Fusarium oxysporum, as target organisms.
    Methods in molecular biology (Clifton, N.J.) 02/2006; 344:403-20.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Fungal hydrophobins are implicated in cell morphogenesis and pathogenicity in several plant pathogenic fungi including the rice blast fungus Magnaporthe grisea. A cDNA clone encoding a hydrophobin (magnaporin, MHP1) was isolated from a cDNA library constructed from rice leaves infected by M. grisea. The MHP1 codes for a typical fungal hydrophobin of 102 amino acids containing eight cysteine residues spaced in a conserved pattern. Hydropathy analysis of amino acids revealed that MHP1 belongs to the class II group of hydrophobins. The amino acid sequence of MHP1 exhibited about 20% similarity to MPG1, an M. grisea class I hydrophobin. Expression of MHP1 was highly induced during plant colonization and conidiation, but could hardly be detected during mycelial growth. Transformants in which MHP1 was inactivated by targeted gene replacement showed a detergent wettable phenotype, but were not altered in wettability with water. mhp1 mutants also exhibited pleiotropic effects on fungal morphogenesis, including reduction in conidiation, conidial germination, appressorium development and infectious growth in host cells. Furthermore, conidia of mhp1 mutants were defective in their cellular organelles and rapidly lose viability. As a result, mhp1 mutants exhibited a reduced ability to infect and colonize a susceptible rice cultivar. These phenotypes were recovered by re-introduction of an intact copy of MHP1. Taken together, these results indicate that MHP1 has essential roles in surface hydrophobicity and infection-related fungal development, and is required for pathogenicity of M. grisea.
    Molecular Microbiology 10/2005; 57(5):1224-37. · 4.96 Impact Factor

Publication Stats

373 Citations
149.14 Total Impact Points

Institutions

  • 2013
    • North Carolina Agricultural and Technical State University
      Greensboro, North Carolina, United States
    • Johns Hopkins Medicine
      • Department of Pharmacology and Molecular Sciences
      Baltimore, Maryland, United States
  • 2005–2013
    • Seoul National University
      • Department of Agricultural Biotechnology
      Seoul, Seoul, South Korea