Are you Hui-lin Shen?

Claim your profile

Publications (2)4.2 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In many instances, multidrug resistance (MDR) is mediated by increasing the expression at the cell surface of the MDR1 gene product, P-glycoprotein (P-gp), a 170-kD energy-dependent efflux pump. The aim of this study was to investigate the potential benefit of combination therapy with magnetic Fe(3)O(4) nanoparticle [MNP (Fe(3)O(4))] and MDR1 shRNA expression vector in K562/A02 cells. For stable reversal of "classical" MDR by short hairpin RNA (shRNA) aiming directly at the target sequence (3491-3509, 1539-1557, and 3103-3121 nucleotide) of MDR1 mRNA. PGC silencer-U6-neo-GFP-shRNA/MDR1 called PGY1-1, PGY1-2, and PGY1-3 were constructed and transfected into K562/A02 cells by lipofectamine 2000. After transfected and incubated with or without MNP (Fe(3)O(4)) for 48 hours, the transcription of MDR1 mRNA and the expression of P-gp were detected by quantitative real-time PCR and Western-blot assay respectively. Meanwhile intracellular concentration of DNR in K562/A02 cells was detected by flow cytometry (FCM). PGC silencer-U6-neo-GFP-shRNA/MDR1 was successfully constructed, which was confirmed by sequencing and PGY1-2 had the greatest MDR1 gene inhibitory ratio. Analysis of the reversal ratio of MDR, the concentration of daunorubicin (DNR) and the transcription of MDR1 gene and expression of P-gp in K562/A02 showed that combination of DNR with either MNP (Fe(3)O(4)) or PGY1-2 exerted a potent cytotoxic effect on K562/A02 cells, while combination of MNP (Fe(3)O(4)) and PGY1-2 could synergistically reverse multidrug resistance. Thus our in vitro data strongly suggested that a combination of MNP (Fe(3)O(4)) and shRNA expression vector might be a more sufficient and less toxic anti-MDR method on leukemia.
    International Journal of Nanomedicine 01/2010; 5:437-44. · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study was aimed to evaluate the MDR reversal activity of bromotetrandrine (BrTet) in vitro and in vivo. The inhibitory effects of adriamycin (ADM) used alone or in combination with BrTet or Tet on the proliferation of K562 and K562/A02 cells were evaluated by MTT assay. The ADM accumulation and the protein levels of P-glycoprotein (P-gp) were detected by flow cytometry. The mRNA levels of P-gp were determined by RT-PCR. The in vivo effect of BrTet and Tet was investigated by using nude mice grafted with sensitive human leukemia cell line K562 and MDR cell line K562/A02. The results showed that BrTet at 0.25, 0.5 and 1 micromol/L reversed the resistance to ADM in MDR K562/A02 cells in a dose-dependent manner. Flow cytometry suggested that BrTet significantly increased the intracellular accumulation of ADM in K562/A02 cells in a dose-dependent manner. BrTet also inhibited the overexpression of P-gp in K562/A02 cells, and down-regulated mdr1 expression. In nude mice bearing K562 xenografts on the left flank and K562/A02 xenografts on the right flank, intraperitoneal injection of 10 mg/kg BrTet significantly enhanced the antitumor activity of ADM against K562/A02 xenografts with inhibitory rates of 26.1%, while ADM alone inhibited the growth of K562/A02 xenografts only by 5.8%. No enhancement effect by BrTet was seen in K562 xenografts. It is concluded that BrTet shows significant MDR reversal activity in vitro and in vivo. Its activity may be related to the inhibition of P-gp overexpression and the increase intracellular accumulation of anticancer drugs. BrTet may be a promising-MDR modulator for eventual assessment in the clinic.
    Zhongguo shi yan xue ye xue za zhi / Zhongguo bing li sheng li xue hui = Journal of experimental hematology / Chinese Association of Pathophysiology 10/2009; 17(5):1183-91.