Junwei Hao

Tianjin Medical University, T’ien-ching-shih, Tianjin Shi, China

Are you Junwei Hao?

Claim your profile

Publications (22)107.82 Total impact

  • Annals of Pharmacotherapy 06/2015; 49(6):745-6. DOI:10.1177/1060028015569271 · 2.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Post-stroke depression (PSD) and post-stroke emotional incontinence (PSEI) has attracted world-wide interest in recent years. These emotional disturbances have a negative impact on the rehabilitation process and the associated worse outcome. Consequently, defining the risk factors for development of PSD and PSEI is important. In this study, we evaluated 368 consecutive patients with acute ischemic stroke at admission and at 3 months later. PSD was evaluated by using the Beck Depression Inventory (BDI), and PSEI was evaluated using Kim's criteria. The Social Support Rating Scale (SSRS) and Medical Coping Modes Questionnaire (MCMQ) were also used as measurement tools. Multivariate analyses showed that anterior cortex infarction was associated with PSEI 3 months after stroke occurrence. The appearance of PSD was not related to lesion location. Both motor and sensory dysfunction was independently associated with PSD at admission, whereas low degree of social utilization was the independent factor associated with PSD 3 months after stroke. Acceptance-resignation related to PSD and PSEI both at admission and 3 months after stroke. Avoidance was the independent factor related to PSD at 3 months after stroke onset.
    The International journal of neuroscience 05/2015; DOI:10.3109/00207454.2015.1051045 · 1.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peripheral lymphocytes entering brain ischemic regions orchestrate inflammatory responses, catalyze tissue death, and worsen clinical outcomes of acute ischemic stroke (AIS) in preclinical studies. However, it is not known whether modulating brain inflammation can impact the outcome of patients with AIS. In this open-label, evaluator-blinded, parallel-group clinical pilot trial, we recruited 22 patients matched for clinical and MRI characteristics, with anterior cerebral circulation occlusion and onset of stroke that had exceeded 4.5 h, who then received standard management alone (controls) or standard management plus fingolimod (FTY720, Gilenya, Novartis), 0.5 mg per day orally for 3 consecutive days. Compared with the 11 control patients, the 11 fingolimod recipients had lower circulating lymphocyte counts, milder neurological deficits, and better recovery of neurological functions. This difference was most profound in the first week when reduction of National Institutes of Health Stroke Scale was 4 vs. -1, respectively (P = 0.0001). Neurological rehabilitation was faster in the fingolimod-treated group. Enlargement of lesion size was more restrained between baseline and day 7 than in controls (9 vs. 27 mL, P = 0.0494). Furthermore, rT1%, an indicator of microvascular permeability, was lower in the fingolimod-treated group at 7 d (20.5 vs. 11.0; P = 0.005). No drug-related serious events occurred. We conclude that in patients with acute and anterior cerebral circulation occlusion stroke, oral fingolimod within 72 h of disease onset was safe, limited secondary tissue injury from baseline to 7 d, decreased microvascular permeability, attenuated neurological deficits, and promoted recovery.
    Proceedings of the National Academy of Sciences 12/2014; DOI:10.1073/pnas.1416166111 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation and oxidative stress play an important part in the pathogenesis of focal cerebral ischemia/reperfusion (I/R) injury, resulting in neuronal death. The signaling pathways involved and the underlying mechanisms of these events are not fully understood. Chrysin, which is a naturally occurring flavonoid, exhibits various biological activities. In this study, we investigated the neuroprotective properties of chrysin in a mouse model of middle cerebral artery occlusion (MCAO). To this end, male C57/BL6 mice were pretreated with chrysin once a day for seven days and were then subjected to 1 h of middle cerebral artery occlusion followed by reperfusion for 24 h. Our data show that chrysin successfully decreased neurological deficit scores and infarct volumes, compared with the vehicle group. The increases in glial cell numbers and proinflammatory cytokine secretion usually caused by ischemia/reperfusion were significantly ameliorated by chrysin pretreatment. Moreover, chrysin also inhibited the MCAO-induced up-regulation of nuclear factor-kappa B (NF-κB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS), compared with the vehicle. These results suggest that chrysin could be a potential prophylactic agent for cerebral ischemia/reperfusion (I/R) injury mediated by its anti-inflammatory and anti-oxidative effects.
    International Journal of Molecular Sciences 11/2014; 15(11):20913-26. DOI:10.3390/ijms151120913 · 2.46 Impact Factor
  • Journal of Neurology Neurosurgery & Psychiatry 08/2014; DOI:10.1136/jnnp-2014-308048 · 5.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plumbagin (PL, 5-hydroxy-2-methyl-1,4-naphthoquinone) is an herbal compound derived from medicinal plants of the Droseraceae, Plumbaginaceae, Dioncophyllaceae, and Ancistrocladaceae families. Reports have shown that PL exerts immunomodulatory activity and may be a novel drug candidate for immune-related disease therapy. However, its effects on dendritic cells (DCs), the most potent antigen-presenting cells (APCs), remain unclear. In this study, we demonstrate that PL inhibits the differentiation, maturation, and function of human monocyte-derived DCs. PL can also restrict the expression of Th1- and Th17-polarizing cytokines in mDC. In addition, PL suppresses DCs both in vitro and in vivo, as demonstrated by its effects on the mouse DC line DC2.4 and mice with experimental autoimmune encephalomyelitis (EAE), respectively. Notably, PL ameliorated the clinical symptoms of EAE, including central nervous system (CNS) inflammation and demyelination. Our results demonstrate the immune suppressive and anti-inflammatory properties of PL via its effects on DCs and suggest that PL could be a potential treatment for DC-related autoimmune and inflammatory diseases.
    Journal of Neuroimmunology 08/2014; 273(1-2). DOI:10.1016/j.jneuroim.2014.05.014 · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Importance Pronounced inflammatory reactions occurring shortly after intracerebral hemorrhage (ICH) contribute to the formation and progression of perihematomal edema (PHE) and secondary brain injury. We hypothesized that modulation of brain inflammation reduces edema, thus improving clinical outcomes in patients with ICH.Objective To investigate whether oral administration of fingolimod, a Food and Drug Administration–approved sphingosine 1–phosphate receptor modulator for multiple sclerosis, is safe and effective in alleviating PHE and neurologic deficits in patients with ICH.Design, Setting, and Participants In this 2-arm, evaluator-blinded study, we included 23 patients with primary supratentorial ICH with hematomal volume of 5 to 30 mL. Clinical and neuroimaging feature–matched patients were treated with standard care with or without oral fingolimod. The study was conducted in Tianjin Medical University General Hospital, Tianjin, China.Interventions All patients received standard management alone (control participants) or combined with fingolimod (FTY720, Gilenya), 0.5 mg, orally for 3 consecutive days. Treatment was initiated within 1 hour after the baseline computed tomographic scan and no later than 72 hours after the onset of symptoms.Main Outcomes and Measures Neurologic status and hematomal and PHE volumes (Ev) and relative PHE, defined as Ev divided by hematomal volume, were monitored by clinical assessment and magnetic resonance imaging, respectively, for 3 months.Results Patients treated with fingolimod exhibited a reduction of neurologic impairment compared with control individuals, regained a Glasgow Coma Scale score of 15 by day 7 (100% vs 50%, P = .01), and had a National Institutes of Health Stroke Scale score reduction of 7.5 vs 0.5 (P < .001). Neurologic functions improved in these patients in the first week coincident with a reduction of circulating lymphocyte counts. At 3 months, a greater proportion of patients receiving fingolimod achieved full recovery of neurologic functions (modified Barthel Index score range, 95-100; 63% vs 0%; P = .001; modified Rankin Scale score range, 0-1; 63% vs 0%; P = .001), and fewer reported ICH-related lung infections. Perihematomal edema volume and rPHE were significantly smaller in fingolimod-treated patients than in control individuals (Ev at day 7, 47 mL vs 108 mL, P = .04; Ev at day 14, 55 mL vs 124 mL, P = .07; rPHE at day 7, 2.5 vs 6.4, P < .001; rPHE at day 14, 2.6 vs 7.7, P = .003, respectively). We recorded no differences between groups in the occurrence of adverse events.Conclusions and Relevance In patients with small- to moderate-sized deep primary supratentorial ICH, administration of oral fingolimod within 72 hours of disease onset was safe, reduced PHE, attenuated neurologic deficits, and promoted recovery. The efficacy of fingolimod in preventing secondary brain injury in patients with ICH warrants further investigation in late-phase trials.Trial Registration clinicaltrials.gov Identifier:NCT02002390
    JAMA Neurology 07/2014; 71(9). DOI:10.1001/jamaneurol.2014.1065 · 7.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Guillain-Barré syndrome (GBS) is an acute, post-infectious, immune-mediated, demyelinating disease of peripheral nerves and nerve roots. Experimental autoimmune neuritis (EAN) is an animal model of GBS. Chrysin, which is a naturally occurring flavonoid, exhibits various biological activities. This study was designed to investigate the anti-inflammatory and neuroprotective properties of preventative and therapeutic chrysin treatment in EAN rats. For preventative treatment, chrysin was administered orally from day 1 to day 16 (50 mg/kg once daily) while, for therapeutic treatment, rats received chrysin from day 7 to day 16 at the same dose once daily. Control animals received the same volume of the vehicle (PBS/2% DMSO). Regardless of the treatment regimen, chrysin attenuated the severity and duration of the clinical course of EAN and reduced inflammatory cell infiltration and demyelination of sciatic nerves. In the sciatic nerves, the expression of inducible nitric oxide synthase, cyclooxygenase-2 and nuclear factor kappa B was reduced. Furthermore, chrysin inhibited the splenic mononuclear cell secretion of IL-1β, IL-2, IL-6, IL-12, IFN-γ and TNF-α, and elevated the level of IL-4. In summary, our data demonstrate that chrysin is a potentially useful agent for the treatment of EAN with its anti-inflammatory and neuroprotective effect.
    Neuroscience 01/2014; 262. DOI:10.1016/j.neuroscience.2014.01.004 · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glatiramer acetate (GA) is one of the first-line disease-modifying medications that have been approved for the treatment of multiple sclerosis via immune modulatory mechanisms. However, it remains unclear whether the immunomodulation effect of GA is central nervous system (CNS) antigen specific. Here, we explored the mechanism of action of GA by subcutaneously injecting GA in experimental autoimmune neuritis (EAN) rats, an animal model for Guillain-Barré syndrome (GBS). Clinical, electrophysiological and histological findings showed that neurological deficits, demyelination and axonal injury of sciatic nerves were all significantly attenuated in Lewis rats when GA was administered before immunization with peripheral nervous system antigen P0. Our results further demonstrated that GA treatment inhibited either P0 or myelin basic protein (MBP) (CNS antigen)-stimulated auto-immune T-cell proliferation in vitro. GA administrated at 10 days after induction of EAN when neurological sign became apparent also ameliorated the severity of disease, inhibited T-cell response to P0 and MBP and induced shift of proinflammatory and immune modulatory cytokines. Collectively, our findings suggested that GA attenuated neurological deficits in EAN rats and that the immune modulatory mechanisms of GA were not CNS antigen specific.Immunology and Cell Biology advance online publication, 26 November 2013; doi:10.1038/icb.2013.81.
    Immunology and Cell Biology 11/2013; DOI:10.1038/icb.2013.81 · 4.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Embelin (2,5-dihydroxy-3-undecyl-1,4-benzoquinone, EB) has been shown to inhibit the X-linked inhibitor of apoptosis protein and various inflammatory pathways. Although different molecular mechanisms have been described for the potent antitumor activities of EB, its potential effect on inflammatory and immune-mediated diseases such as multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE) remains unclear. In this study, we demonstrated that EB suppressed human CD14(+) monocyte-derived dendritic cell (DC) differentiation, maturation, and endocytosis and further inhibited the stimulatory function of mature DCs on allogeneic T cell proliferation in vitro. In addition, EB blocked the DC-derived expression of the Th1 cell-polarizing cytokines interferon-γ and interleukin (IL)-12 and the Th17 cell-polarizing cytokines IL-6 and IL-23. In vivo administration of EB led to a reduction in the EAE clinical score, in central nervous system inflammation, and in demyelination. Furthermore, EB also suppressed inflammatory Th1 and Th17 cells in EAE, at least partially, through the promotion of transforming growth factor-beta and β-catenin expression and inhibition of signal transducer and activator of transcription 3 signaling pathways in DCs. These data suggest that EB has potent anti-inflammatory and immunosuppressive properties and is a potential therapeutic drug for MS and other autoimmune inflammatory diseases.
    Molecular Neurobiology 11/2013; DOI:10.1007/s12035-013-8583-7 · 5.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Guillain-Barré syndrome (GBS) is an acute and usually monophasic, neurological, demyelinating disease. Although most patients have good outcomes without sequelae after conventional plasma exchange and intravenous immunoglobulin therapy, 20 % of patients continue to have severe disease and 5 % die of their disease. Therefore, there is an obvious need for more acceptable and efficacious therapies. Experimental autoimmune neuritis (EAN) is the classical animal model for GBS. As there is no specific drug for GBS, several drugs targeting the humoral and cellular components of the immune response have been used to treat EAN in the endeavour to find new treatment alternatives for GBS. This review focused on some new strategies for GBS, which have been reported but have not yet been widely used, and on the main drugs which have been investigated in EAN.
    Clinical Reviews in Allergy & Immunology 09/2013; DOI:10.1007/s12016-013-8388-5 · 4.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: IL-10 is an anti-inflammatory cytokine that plays a significant role in controlling inflammation and modulating adaptive immune responses that cause tissue damage. IL-10-producing lymphocytes contribute to the delicate balance between inflammation and immunoregulation, and are thus regarded as a kind of "regulatory cells." Dysregulation of these cells is linked with susceptibility to numerous inflammatory diseases. In this review, we summarized what is known about the regulatory effects of IL-10 produced by lymphocytes, including T cells, B cells and natural killer cells, in inflammatory diseases. We hope to augment immune responses or prevent immunopathology through making some small changes in the levels of IL-10 produced by lymphocytes, or in the cellular location where it is produced.
    International Reviews Of Immunology 04/2013; DOI:10.3109/08830185.2012.762361 · 5.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cigarette smoke exposure markedly compromises the ability of the immune system to protect against invading pathogens and tumorigenesis. Nicotine is a psychoactive component of tobacco products that acts as does the natural neurotransmitter, acetylcholine, on nicotinic receptors (nAChRs). Here we demonstrate that natural killer (NK) cells strongly express nAChR β2. Nicotine exposure impairs the ability of NK cells to kill target cells and release cytokines, a process that is largely abrogated by nAChR β2 deficiency. Further, nicotinic suppression of NF-κB-induced transcriptional activity in NK cells is dependent on nAChR β2. This nAChR subtype also plays a large role in the NK cell-mediated control of melanoma lung metastasis, in a murine lung metastasis model exposed to nicotine. Our findings suggest nAChR β2 as a prominent pathway for nicotine induced impairment of NK cell functions which contributes to the occurrence of smoking-related pathologies.
    PLoS ONE 02/2013; 8(2):e57495. DOI:10.1371/journal.pone.0057495 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The matrix-degrading metalloproteinases (MMPs), particularly MMP-9, play important roles in the pathogenesis and development of malignant gliomas. In the present study, the oncogenic role of MMP-9 in malignant glioma cells was investigated via antisense RNA blockade in vitro and in vivo. TJ905 malignant glioma cells were transfected with pcDNA3.0 vector expressing antisense MMP-9 RNA (pcDNA-ASMMP9), which significantly decreased MMP-9 expression, and cell proliferation was assessed. For in vivo studies, U251 cells, a human malignant glioma cell line, were implanted subcutaneously into 4- to 6-week-old BALB/c nude mice. The mice bearing well-established U251 gliomas were treated with intratumoral pcDNA-AS-MMP9-Lipofectamine complex (AS-MMP-9-treated group), subcutaneous injection of endostatin (endostatin-treated group), or both (combined therapy group). Mice treated with pcDNA (empty vector)-Lipofectamine served as the control group. Four or eight weeks later, the volume and weight of tumor, MMP-9 expression, microvessel density and proliferative activity were assayed. We demonstrate that pcDNA-AS-MMP9 significantly decreased MMP-9 expression and inhibited glioma cell proliferation. Volume and weight of tumor, MMP-9 expression, microvessel density and proliferative activity in the antisense-MMP-9-treated and therapeutic alliance groups were significantly lower than those in the control group. The results suggest that MMP-9 not only promotes malignant glioma cell invasiveness, but also affects tumor cell proliferation. Blocking the expression of MMP-9 with antisense RNA substantially suppresses the malignant phenotype of glioma cells, and thus can be used as an effective therapeutic strategy for malignant gliomas.
    Neuroscience Bulletin 01/2013; 29(1). DOI:10.1007/s12264-012-1296-5 · 1.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vorinostat, a histone deacetylase inhibitor, has been used clinically as an anticancer drug and also has immunosuppressive properties. However, the underlying mechanisms of effects of vorinostat on central nervous system (CNS) inflammatory diseases remain incomplete. Here, this study investigates the effects of vorinostat on human CD14(+) monocyte-derived dendritic cells (DCs) and mouse immature DC in vitro. Furthermore, we explore the therapeutic effects and cellular mechanisms of vorinostat on animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE) in vivo. Our findings demonstrate that vorinostat inhibited human CD14(+) monocyte-derived DCs differentiation, maturation, endocytosis, and further inhibited mDC's stimulation of allogeneic T-cell proliferation. In addition, vorinostat inhibited DC-directed Th1- (Type 1T helper) and Th17-polarizing cytokine production. Furthermore, vorinostat ameliorated Th1- and Th17-mediated EAE by reducing CNS inflammation and demyelination. What's more, Th1 and Th17 cell functions were suppressed in vorinostat-treated EAE mice. Finally, vorinostat suppressed expression of costimulatory molecules of DC in EAE mice. These suggest therapeutic effects of vorinostat on EAE which may by suppress DCs and DCs-mediated Th1 and Th17 cell functions. Our findings warrant further investigation in the potential of vorinostat for the treatment of human multiple sclerosis.
    Experimental Neurology 12/2012; 241. DOI:10.1016/j.expneurol.2012.12.006 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A prominent clinical symptom in multiple sclerosis (MS), a progressive disorder of the central nervous system (CNS) due to heightened neuro-inflammation, is learning and memory dysfunction. Here, we investigated the effects of a ketogenic diet (KD) on memory impairment and CNS-inflammation in a murine model of experimental autoimmune encephalomyelitis (EAE), using electrophysiological, behavioral, biochemical and in vivo imaging approaches. Behavioral spatial learning deficits were associated with motor disability in EAE mice, and were observed concurrently with brain inflammation. The KD improved motor disability in the EAE model, as well as CA1 hippocampal synaptic plasticity (long-term potentiation) and spatial learning and memory (assessed with the Morris Water Maze). Moreover, hippocampal atrophy and periventricular lesions in EAE mice were reversed in KD-treated EAE mice. Finally, we found that the increased expression of inflammatory cytokines and chemokines, as well as the production of reactive oxygen species (ROS), in our EAE model were both suppressed by the KD. Collectively, our findings indicate that brain inflammation in EAE mice is associated with impaired spatial learning and memory function, and that KD treatment can exert protective effects, likely via attenuation of the robust immune response and increased oxidative stress seen in these animals.
    PLoS ONE 05/2012; 7(5):e35476. DOI:10.1371/journal.pone.0035476 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetic analyses indicate that HLA complex genes can be involved in susceptibility to autoimmune myasthenia gravis (MG). Various HLA alleles serve as genetic elements that either predispose to or protect against MG. This study investigates the probable relationship between HLA-DQ allele polymorphisms and MG cases in northern China. The HLA-DQA1 and DQB1 alleles were determined by polymerase chain reaction/sequence-specific primers (PCR-SSP) in 84 MG patients, and the results were compared to 293 healthy controls. Our findings indicate that DQ A1*0401(P=0.008, OR: 2.5, 95%CI: 1.24-3.07) and B1*0301(P=0.000, OR: 2.29, 95%CI: 1.48-3.54) were the most frequent allele; the frequencies of DQA1*0103(P=0.000, OR:0.24, 95%CI 0.13-0.49) and DQB1*0601(P=0.001, OR:0.40, 95%CI 0.22-0.50) were significantly decreased in MG patients compared with healthy controls. Patients with thymomatous MG were positively associated with DQA1 *0401(P=0.011, OR:4.57, 95% CI 1.40-14.90) and DQB1 *0604 (P=0.001, OR:4.01, 95% CI 1.65-9.73) as compared to MG patients without thymoma. Different genetic mechanisms may exist between MG patients with thymoma and those without thymoma. The HLA-DQ associations in MG subgroups suggest that disease heterogeneity may be influenced by different genes or alleles.
    Journal of the neurological sciences 09/2011; 312(1-2):57-61. DOI:10.1016/j.jns.2011.08.023 · 2.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of natural killer (NK) cells in regulating multiple sclerosis (MS) is not well understood. Additional studies with NK cells might provide insight into the mechanism of action of MS therapies such as daclizumab, an antibody against the interleukin (IL)-2R α-chain, which induces expansion of CD56(bright) NK cells. In a relapsing-remitting form of the experimental autoimmune encephalomyelitis (EAE) model of MS induced in SJL mice, we expanded NK cells with IL-2 coupled with an anti-IL-2 monoclonal antibody (mAb) and evaluated the effects of these NK cells on EAE. Further, we investigated the effect of the human version of IL-2/IL-2 mAb on NK cells from MS patients and its effect on central nervous system (CNS) inflammation and pathology in a human-mouse chimera model and assessed the underlying mechanisms. IL-2/IL-2 mAb dramatically expands NK cells both in the peripheral lymphoid organs and in the CNS, and attenuates CNS inflammation and neurological deficits. Disease protection is conferred by CNS-resident NK cells. Importantly, the human version of IL-2/IL-2 mAb restored the defective CD56(+) NK cells from MS patients in a human-mouse chimera model. Both the CD56(bright) and CD56(dim) subpopulations were required to attenuate disease in this model. These findings unveil the immunotherapeutic potential of NK cells, which can act as critical suppressor cells in target organs of autoimmunity. These results also have implications to better understand the mechanism of action of daclizumab in MS.
    Annals of Neurology 04/2011; 69(4):721-34. DOI:10.1002/ana.22339 · 11.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aims to investigate μ-calpain expression profiles in the anterior temporal neocortex in patients with intractable epilepsy, and to determine whether its pattern of expression is related to pathological changes seen in these patients. The study subjects consisted of 30 patients with intractable epilepsy and a control group of 10 patients with brain trauma who underwent resection of the anterior temporal lobe. μ-Calpain expression in surgically resected anterior temporal cortices of patients with intractable epilepsy were analyzed using the RT-PCR, Western blot, immunohistochemistry and immunofluorescence staining. GFAP expression was detected by immunohistochemical staining. The related pro-inflammatory cytokines were quantified by elisa. Clinicopathological characteristics were evaluated by HE staining. Analysis by Western blot and RT-PCR revealed that inactive μ-calpain expression and the calpain-cleaved spectrin fragment in surgically resected anterior temporal cortices of patients with intractable epilepsy were significantly increased compared to the tissues from corresponding regions of the control group. Immunohistological staining demonstrated that μ-calpain was overexpressed in the cell cytoplasm of neurons and glial cells in patients with intractable epilepsy and GFAP was overexpressed in the cell cytoplasm of glial cells in patients with intractable epilepsy. The level of pro-inflammatory cytokines, such as IL-1β, IL-6 and TGF-β1 were significantly increased in patients with intractable epilepsy. HE staining indicated μ-calpain overexpression is an independent prognostic factor for pathological changes such as neuronal loss, neuronal degeneration, gliosis and astrocytosis. These data suggest that overexpression of μ-calpain is relationship with intractable epilepsy as well as the clinicopathological characteristics in these patients.
    Seizure 02/2011; 20(5):395-401. DOI:10.1016/j.seizure.2011.01.010 · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A considerable number of in vivo studies have demonstrated that the cholinergic system can dampen the peripheral immune response, and it is thought that the α7-nicotinic acetylcholine receptor (nAChR) subtype is a key mediator of this process. The goal of the present study was to determine if nicotine modulates immunological mechanisms known to be involved in the development of experimental autoimmune encephalomyelitis (EAE), a mouse model for CNS autoimmune disease, via α7-nAChRs. Here we show that nicotine exposure attenuates EAE severity and that this effect is largely abolished in nAChR α7 subunit knock-out mice. However, nicotine exposure partially retains the ability to reduce lymphocyte infiltration into the CNS, inhibit auto-reactive T cell proliferation and helper T cell cytokine production, down-regulate co-stimulatory protein expression on myeloid cells, and increase the differentiation and recruitment of regulatory T cells, even in the absence of α7-nAChRs. Diverse effects of nicotine on effector and regulatory T cells, as well as antigen-presenting cells, may be linked to differential expression patterns of nAChR subunits across these cell types. Taken together, our data show that although α7-nAChRs indeed seem to play an important role in nicotine-conferred reduction of the CNS inflammatory response and protection against EAE, other nAChR subtypes also are involved in the anti-inflammatory properties of the cholinergic system.
    Experimental Neurology 10/2010; 227(1):110-9. DOI:10.1016/j.expneurol.2010.09.020 · 4.62 Impact Factor

Publication Stats

185 Citations
107.82 Total Impact Points

Institutions

  • 2011–2014
    • Tianjin Medical University
      T’ien-ching-shih, Tianjin Shi, China
  • 2009–2012
    • Barrow Neurological Institute
      • Department of Neurology
      Phoenix, Arizona, United States
  • 2010–2011
    • Nankai University
      • School of Medicine
      T’ien-ching-shih, Tianjin Shi, China