Anne Garat

University of Lille Nord de France, Lille, Nord-Pas-de-Calais, France

Are you Anne Garat?

Claim your profile

Publications (10)18.49 Total impact

  • 54ème réunion de l'association Italo-Belgo-Franco-Suisse, Palazzo della Societa Elettrica Sopracenerina SES - Piazza Grande 5 - 6600 Locarno - Svizzera; 09/2014
  • Analytical, Clinical and Forensic Toxicology Meeting, Société Française de Toxicologie Analytique, Grand-Théâtre, Bordeaux, France; 06/2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Traffic-related volatile organic compounds (VOCs) pollution has frequently been demonstrated to be a serious problem in the developing countries. Benzene and 1,3-butadiene (BD) have been classified as a human carcinogen based on evidence for an increased genotoxic and epigenotoxic effects in both occupational exposure assessment and in vivo/in vitro studies. We have undertaken a biomonitoring of 25 traffic policemen and 23 office policemen in Beirut, through personal air monitoring, assessed by diffusive samplers, as well as through the use of biomarkers of exposure to benzene and BD. Personal benzene, toluene, ethylbenzene, and xylene (BTEX) exposure were quantified by GC-MS/MS, urinary trans, trans-muconic acid (t,t-MA) by HPLC/UV, S-phenyl mercapturic acid (S-PMA), monohydroxy-butenyl mercapturic acid (MHBMA) and dihydroxybutyl mercapturic acid (DHBMA) by ultra-performance liquid chromatography-electrospray tandem mass spectrometry (UPLC/ESI(-)-MS/MS) in MRM (Multiple Reaction Monitoring) mode. We found that individual exposure to benzene in the traffic policemen was higher than that measured in traffic policemen in Prague, in Bologna, in Ioannina and in Bangkok. t,t-MA levels could distinguish between office and traffic policemen. However, median MHBMA levels in traffic policemen were slightly elevated, though not significantly higher than in office policemen. Alternatively, DHBMA concentrations could significantly distinguish between office and traffic policemen and showed a better correlation with personal total BTEX exposure. DHMBA, measured in the post-shift urine samples, correlated with both pre-shift MHMBA and pre-shift DHMBA. Moreover, there was not a marked effect of smoking habits on DHBMA. Taken together, these findings suggested that DHBMA is more suitable than MHBMA as biomarker of exposure to BD in humans. Traffic policemen, who are exposed to benzene and BD at the roadside in central Beirut, are potentially at a higher risk for development of diseases such as cancer than office policemen.
    Chemosphere 10/2013; · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to determine the frequencies of TPMT and ITPA polymorphisms in Crohn's disease patients of Tunisian origin and to compare them with allele frequencies previously reported in other populations of various ethnic origins. ITPA (c.94C>A and IVS2+21A>C) and TPMT (c.238G>C, c.460G>A and c.719A>G) mutations and genotypes were assessed in 208 Tunisian subjects (78 males/130 females) by polymerase chain reaction-restriction fragment length polymorphism and allele-specific-PCR methods. Genotyping of ITPA revealed frequencies of 6% and 7.9% for c.94C>A and IVS2+21A>C, respectively. Accordingly, deficient or diminished ITPA phenotype can be predicted to concern 2.4% of Tunisians. The observed frequencies of the c. 238G>C, c.460G>A and c.719A>G TPMT polymorphisms were 0, 0.24 and 1.44%, respectively. This study provides the first analysis of TPMT and ITPA mutant allele frequency in individuals of Tunisian origin. Unlike in Caucasians, TPMT*3C which harbours the c.719A>G polymorphism appears to be the most common mutant allele in Tunisians. In contrast, ITPA mutant allele frequency distribution appears to be similar to that observed in Caucasians.
    Gastroentérologie Clinique et Biologique 01/2012; 36(2):178-84. · 0.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tramadol is a synthetic, centrally acting analgesic for the treatment of moderate to severe pain. The marketed tramadol is a racemic mixture containing 50% (+)tramadol and 50% (-)tramadol and is mainly metabolized to O-desmethyltramadol (M1) by the cytochrome P450 CYP2D6. Tramadol is generally considered to be devoid of any serious adverse effects of traditional opioid receptor agonists, such as respiratory depression and drug dependence. A 22-year-old Caucasian female patient was admitted to our ICU in refractory cardiac arrest requiring extracorporeal membrane oxygenation. This aggressive support allowed resolution of multi-organ dysfunction syndrome. Repeated blood analyses using liquid chromatography-tandem mass spectrometry confirmed high concentrations of both tramadol and its main metabolite O-desmethyltramadol. Genotyping of CYP2D6 revealed the patient to be heterozygous for a duplicated wild-type allele, predictive of a CYP2D6 ultrarapid metabolizer (UM) phenotype, confirmed by calculation of the tramadol/M1 (MR1) metabolic ratio at all time points. We here report a case of near-fatal isolated tramadol cardiotoxicity. Because of the inhibition of norepinephrine reuptake, excessive blood epinephrine levels in this CYP2D6R UM patient following excessive tramadol ingestion could explain the observed strong myocardial stunning. This patient admitted intermittent tramadol consumption to gain a "high" sensation. In patients with excessive morphinomimetic effects, levels of tramadol and its main metabolite M1could be measured, ideally combined with CYP2D6 genotyping, to identify individuals at risk of tramadol-related cardiotoxicity. Tramadol treatment could be optimized in these at-risk individuals, consequently improving patient outcome and safety.
    European Journal of Clinical Pharmacology 06/2011; 67(8):855-8. · 2.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adverse effects of thiopurine drugs occur in 15-28% of patients and the majority is not explained by thiopurine-S-methyltransferase deficiency. Furthermore, approximately 9% of patients with inflammatory bowel disease are resistant to azathioprine therapy. Recently, the small guanosine triphosphatase, Rac1, was identified as an important molecular target of 6-thioguanine triphosphate, one of the active metabolite of thiopurines such as azathioprine. To date, no functional genetic polymorphism of the human Rac1 gene had been reported. Evidence for functional genetic polymorphisms of the human Rac1 gene and to investigate their relative contribution to the development of toxicity induced by azathioprine treatment in patients with inflammatory bowel disease. We first screened for polymorphisms in the Rac1 gene in genomic DNA samples from 92 unrelated Caucasian individuals. The functional consequences of identified polymorphisms were assessed in vitro using transient transfection assays in Jurkat and A549 cell lines. The relationship between polymorphisms of Rac1 and thiopurine response or hematotoxicity was studied in 128 patients under thiopurine treatment. Three single nucleotide polymorphism and one variable number tandem repeat were identified in the promoter region of Rac1 gene. Interestingly, in Jurkat T cells, the c.-289G>C substitution and c.-283_-297[3] variable number tandem repeat displayed a significantly increased promoter activity (P<0.01) of 150 and 300%, respectively, compared with that of the wild-type sequence. Patients with thiopurine-S-methyltransferase mutations presented a significantly increased probability of developing hematotoxicity (odds ratio=5.68, 95% confidence interval=1.45-22.23, P=0.00625). Moreover, among the 75 patients who did not develop hematotoxicity, there was a marginally overrepresentation of functional genetic polymorphisms of Rac1 (odds ratio=0.18, 95% confidence interval=0.02-1.49, P=0.079). This study constitutes the first report of a functional genetic polymorphism that could affect Rac1 expression and thus modulate the risk of adverse drug reaction in patients under thiopurine treatment. A larger scale (case-control) study should enable us to confirm or cancel these preliminary results.
    Pharmacogenetics and Genomics 03/2011; 21(6):313-24. · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human type II inosine monophosphate dehydrogenase (IMPDH2) is a key enzyme in the purine nucleotide biosynthetic pathway and constitutes a pivotal biological target for immunosuppressant and antiviral drugs. Several Single Nucleotide Polymorphisms (SNP) affecting the IMPDH2 gene sequence have been reported with potential functional relevance and could impact drugs response. We aimed to determine the frequency of three of these polymorphisms, namely g.3375C>T (Leu(263)Phe), c.-95T>G and IVS7+10T>C, in Caucasians, Tunisians, Peruvians and Black Africans (Gabonese and Senegalese). The g.3375C>T and c.-95T>G polymorphisms are rare with a Minor Allele Frequency ≤1.0% in our populations, whereas the third variant, IVS7+10T>C, is more frequent and displays large interethnic variations, with an allelic frequency ranging from 14.6% in the French Caucasian population studied to less than 2% in Black African and Peruvian populations. This ethnic-related data might contribute to a better understanding of the variability in clinical outcome and/or dose adjustments of drugs that are IMPDH inhibitors such as mycophenolic acid.
    Molecular Biology Reports 12/2010; 38(8):5185-8. · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inosine 5'-monophosphate dehydrogenase (IMPDH), which catalyzes a key step in the de novo biosynthesis of guanine nucleotide, is mediated by two highly conserved isoforms, IMPDH1 and IMPDH2. In this study, IMPDH2 genetic polymorphism was investigated in 96 individuals of Caucasian origin. Four single-nucleotide polymorphisms were identified, comprising one previously described single base-pair substitution in the close vicinity of the consensus donor splice site of intron 7 (IVS7+10T>C), and three novel polymorphisms, one silent substitution in exon 9 (c.915C>G), one single base-pair insertion (g.6971_6972insT) within the 3'-untranslated region of the gene, and one substitution located in the promoter region (c.-95T>G) in a transcription factor binding site CRE(A) (cyclic adenosine monophosphate [cAMP] response element). Considering the nature and location of this latter polymorphism, its functional relevance was examined by transfecting HEK293 and Jurkat cell lines with constructs of the related region of IMPDH2/luciferase reporter gene. The c.-95T>G mutation leads to a significant decrease of luciferase activity (HEK293: 55% decrease, p < 0.05; Jurkat: 65% decrease, p < 0.05) compared with the wild-type promoter sequence and, therefore, is likely to determine interindividual differences in IMPDH2 transcriptional regulation. These results might contribute to a better understanding of the variability in clinical outcome and dose adjustments of certain immunosuppressors that are metabolized through the IMPDH pathway or that are IMPDH inhibitors.
    Genetic Testing and Molecular Biomarkers 10/2009; 13(6):841-7. · 1.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human thiopurine S-methyltransferase (TPMT, EC 2.1.1.67) is a key enzyme in the detoxification of thiopurine drugs widely used in the treatment of various diseases, such as inflammatory bowel diseases, acute lymphoblastic leukaemia and rheumatic diseases. The TPMT gene is genetically polymorphic and the inverse relationship between TPMT activity and the risk of developing severe hematopoietic toxicity is well known. In this study, the entire coding sequence of TPMT, together with its 5'-flanking promoter region, was analysed in patients with an intermediate phenotype for thiopurine drug methylation. Four polymorphisms were identified, two previously described, c.356A>C (p.Lys(119)Thr, TPMT*9) and c.205C>G (p.Leu(69)Val, TPMT*21), and two novel missense mutations, c.537G>T (p.Gln(179)His, TPMT*24) and c.634T>C (p.Cys(212)Arg, TPMT*25). Structural investigations, using molecular modeling, were undertaken in an attempt to explain the potential impact of the amino acid substitutions on the structure and activity of the variant proteins. Additionally, in order to determine kinetic parameters (K(m) and V(max)) of 6-thioguanine (6-TG) methylation, the four variants were expressed in a recombinant yeast expression system. Assays were performed by HPLC and the results were compared with those of wild-type TPMT. The p.Leu(69)Val and the p.Cys(212)Arg substitutions encode recombinant enzymes with a significantly decreased intrinsic clearance compared to that of the wild-type protein, and, consequently, characterise non-functional alleles of TPMT. The p.Lys(119)Thr and the p.Gln(179)His substitutions do not affect significantly the catalytic activity of the corresponding variant proteins, which prevents to unambiguously describe these latter alleles as defective TPMT variants.
    Biochemical pharmacology 08/2008; 76(3):404-15. · 4.25 Impact Factor
  • Source
    Anne Garat
    [Show abstract] [Hide abstract]
    ABSTRACT: Les médicaments thiopuriniques que sont l'azathioprine, la 6-mercaptopurine et la 6-thioguanine sont utilisés depuis des décennies pour leurs propriétés cytotoxiques et immunosuppressives dans le traitement de certaines leucémies, de maladies inflammatoires chroniques ou auto-immunes ainsi que dans la prévention du rejet de greffe. Certains patients, traités par des doses conventionnelles de ces molécules, développent cependant des effets indésirables parfois très sévères. Le déficit d'activité, d'origine génétique, de la thiopurine S-méthyltransférase (TPMT), enzyme impliquée dans le métabolisme des thiopurines, constitue l'un des facteurs majeurs de la myélotoxicité de ces médicaments. La détermination du phénotype TPMT par génotypage, qui est une mesure préventive avant l'introduction d'un traitement thiopurinique, repose sur l'identification des mutations inactivatrices les plus fréquentes du gène TPMT. Une partie de ce travail a consisté en l'analyse fonctionnelle de quatre variants alléliques rares du gène TPMT dans un système d'expression hétérologue, la levure S. cerevisiae. Le caractère non-fonctionnel de deux d'entre eux a ainsi été démontré. Cependant, le déficit d'activité de la TPMT ne permet d'expliquer qu'environ 30 % des cas de myélotoxicité sous thiopurines, ce qui laisse supposer l'existence d'autres anomalies génétiques affectant d'autres gènes impliqués dans la réponse de l'organisme à ces molécules. Ainsi, nous avons étudié le polymorphisme génétique de deux autres protéines candidates, celui de l'inosine monophosphate déshydrogénase de type 2 (IMPDH2), enzyme-clé de la formation des métabolites actifs des thiopurines, et celui de la RhoGTPase RAC1, qui est l'une des cibles pharmacologiques de ces molécules. Certains des polymorphismes que nous avons identifiés dans ces deux gènes semblent affecter in vitro l'expression et/ou l'activité de ces protéines et pourraient, par conséquent, contribuer aux variations inter-individuelles de réponse aux thiopurines