Stefan Vidal

Georg-August-Universität Göttingen, Göttingen, Lower Saxony, Germany

Are you Stefan Vidal?

Claim your profile

Publications (45)95.59 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The larvae of the invasive maize pest Diabrotica virgifera virgifera (Coleoptera; Chrysomelidae, western corn rootworm) hatch in the soil in spring and search for maize roots following CO2 gradients. CO2 is one cue that might be used as an attractant towards soil insecticides, a mechanism already shown in laboratory experiments. This study compared the efficacy of several combinations of in or between-row applications of different rates of CO2-emitting capsules and/or soil insecticides (here tefluthrin) aimed at preventing root damage by the pest larvae under field conditions. CO2 emission of the capsules in the soil lasted up to 28 days with a peak after 21 days coinciding with the first larval hatch. The pest density in the soil was not high enough to cause root damage above the economic threshold. Furthermore all tefluthrin applications, regardless of whether at full, half or quarter rates effectively prevented root damage; thus CO2 did not significantly further increase this efficacy. In-row applications of tefluthrin with or without CO2-emitting capsules prevented root damage to a much larger extent (59–77 % on the node injury scale) than the between-row applications of tefluthrin with or without capsules (17–31 %). In conclusion, further research on belowground orientation and movement of D. v. virgifera larvae, as well as tests with combinations of CO2-emitting capsules and lower rates of soil insecticide are needed to potentially develop attract and kill strategies as a management option against this maize pest.
    Journal of Pest Science 06/2014; 87(2). · 2.17 Impact Factor
  • M Schumann, A Patel, S Vidal
    [Show abstract] [Hide abstract]
    ABSTRACT: Western corn rootworm (Diabrotica virgifera virgifera LeConte) larvae use carbon dioxide (CO2) to locate the roots of their hosts. This study investigated whether an encapsulated CO2 source (CO2-emitting capsules) is able to outcompete CO2 gradients established by corn root respiration in the soil. Furthermore, the following two management options with the capsules were tested in semifield experiments (0.5- to 1-m2 greenhouse plots): the disruption of host location and an "attract-and-kill" strategy in which larvae were lured to a soil insecticide (Tefluthrin) between the corn rows. The attract-and-kill strategy was compared with an application of Tefluthrin in the corn rows (conventional treatment) at 33 and 18% of the standard field application rate. Application of the CO2-emitting capsules 30 cm from the plant base increased CO2 levels near the application point for up to 20 d with a peak at day 10. Both the disruption of host location and an attract-and-kill strategy caused a slight but nonsignificant reduction in larval densities. The disruption of host location caused a 17% reduction in larval densities, whereas an attract-and-kill strategy with Tefluthrin added at 33 and 18% of the standard application rate caused a 24 and 27% reduction in larval densities, respectively. As presently formulated, the CO2-emitting capsules, either with or without insecticide, do not provide adequate control of western corn rootworm.
    Journal of Economic Entomology 02/2014; 107(1):230-9. · 1.60 Impact Factor
  • Anne Wilstermann, Stefan Vidal
    [Show abstract] [Hide abstract]
    ABSTRACT: Predicting western corn rootworm (Diabrotica virgifera virgifera LeConte; WCR) development in the field depends on models that use experimentally determined degree-days (°D). For constant temperature regimes, this temperature sum can be reliably used to predict hatch and development of WCR larvae. In the first experiment in climate cabinets, we evaluated the effects of varying day–night (4 and 6 °C difference) temperature regimes compared to equivalent constant temperature regimes on hatch, development, and recovery of WCR larvae from a non-diapausing population. Relative to constant diurnal temperatures, varying day–night temperatures resulted in earlier larval hatch and accelerated larval development (especially when day–night temperatures differed by 6 °C) due to direct temperature effects (i.e., the Kaufmann-effect) and to enhanced plant growth. For WCR eggs, the temperature sums needed for hatch in the field are overestimated when they are determined by models based on constant experimental temperatures. Recovery of larvae from soil was not affected by temperature, but was positively associated with plant height. In a second experiment we evaluated whether the found effect of varying temperature ranges on the acceleration of larval hatch is also influenced by the level of these varying temperatures. Initial hatch started earlier by varying diurnal temperatures only under a low-temperature regime (14 ± 4 °C). For herbivorous insects like WCR, plant growth effects induced by varying temperature regimes may result in increased variation in temperature-based developmental parameters. Consideration of these effects will improve models that predict WCR hatching patterns and will improve the development and timing of control strategies.
    Journal of Pest Science 09/2013; · 2.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Western corn rootworm larvae use CO2 to locate maize roots. However, the importance of CO2 as a specific orientation cue close to maize roots is not unequivocally investigated. This study aimed at elucidating the effect of CO2 emitting capsules in combination with a soil insecticide (Tefluthrin = attract and kill) within the root system. We hypothesised that the capsules would result in an aggregation of the larvae at the soil insecticide, thus increasing its efficacy. A non-destructive observation device was used to study larval distribution and behaviour. Spatial analysis of distance indices (SADIE) revealed an aggregation of the larvae around the capsules in an attract and kill treatment after 4 hours which was not found at the conventional treatment without the capsules. However, larval mortality did not differ in both treatments. CO2 is a weak attractant for western corn rootworm larvae within the root system. Consequently, an attract and kill strategy based on a CO2 product will not contribute to a better control compared to conventional Tefluthrin applications. Host specific compounds, combined with a CO2 source, should be used to target more larvae, making attract and kill feasible as a management option against this pest.
    Pest Management Science 07/2013; · 2.74 Impact Factor
  • M.Schumann, A.Patel, S.Vidal
    [Show abstract] [Hide abstract]
    ABSTRACT: Western corn rootworm larvae are serious soil dwelling maize pests, and use carbon dioxide (CO2) to locate maize roots. The efficacy of insecticides can be enhanced by a combination with an attractant used in host finding, known as attract and kill. This study tested the use of CO2 emitting capsules as an attractant in combination with the soil insecticide tefluthrin. An observation device was developed to study the temporal and spatial distribution changes of the larvae and to test whether these are influenced by the application of the capsules. Furthermore it was evaluated to what extent larvae are killed by the insecticide in combination with the capsules and whether this could be used for an attract and kill strategy to manage this pest. The observation device enabled recovery of 20–40% of the inserted larvae. The spatial analysis of distance indices revealed a sequence of spatial and temporal distribution patterns of the larvae in the root system. This sequence of spatial distribution was disrupted by an application of the capsules around which the larvae started to aggregate. Up to 40% mortality of the larvae with attract and kill was observed and thus could be increased over the conventional application (11% mortality) at lower application rates of tefluthrin. In conclusion an attract and kill strategy might be valuable to target this soil dwelling pest. Experiments under field conditions are needed to explore its potential as a management option for the western corn rootworm. Moreover, a further development of the capsules with host specific cues is needed to increase the attractiveness and subsequent mortality of the larvae.
    Applied Soil Ecology 02/2013; 64:178-189. · 2.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In southern Benin, the use of cover crops to improve and maintain soil fertility is on the increase. The present study investigated the effect of two leguminous cover crops, Canavalia ensiformis (L.) DC and Sesbania rostrata Brem. & Oberm., planted at different dates before maize (Zea mays (L.)), and cowpea (Vigna unguiculata L.) planted as border rows on infestations of maize by the pyralid Mussidia nigrivenella Ragonot and of other cob-boring lepidopteran pests. In both trials, M. nigrivenella densities at harvest tended to be higher in the maize alone than the legume treatments, but the effect depended on the timing of planting of the cover crop in relation to that of maize. There were no discernible trends for other borers such as the noctuid Sesamia calamistis Hampson, the pyralid Eldana saccharina Walker, and the tortricid Thaumatotibia leucotreta Meyrick. Furthermore, M. nigrivenella pest loads were considerably higher on C. ensiformis than maize, indicating that the presence of alternative host plant species in the vicinity of maize fields did not increase M. nigrivenella attack on maize. Though in some of the legume treatments, grain damage and grain losses were higher than in the maize alone plots, per area yields did not vary significantly.
    Crop Protection 01/2013; 43:72-78. · 1.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aphids feed on plant phloem sap, rich in sugars but poor in essential amino acids. However, sugars cause osmotic regulation problems for aphids, which they overcome by hydrolysing the sugars in their gut and polymerising the hydrolysis products into oligosaccharides, excreted with honeydew. Aphids harbour primary bacterial endosymbionts, which supply them with essential amino acids necessary for survival. They also harbour secondary (facultative) endosymbionts (sfS), some of which have a positive impact on life history traits, although it is not yet known whether they also play a role in providing effective tolerance to differing levels of water soluble carbohydrates (WSCs). We investigated the relationship between WSC content of cocksfoot cultivars and performance of clones of the English grain aphid Sitobion avenae F. We evaluated how clone genotype and their sfS modulate performance on these different cultivars. We therefore examined the performance of genetically defined clones of S. avenae, collected from different host plants, harbouring different sfS. The performance was tested on 10 Dactylis glomerata L. cultivars with varying WSC content. D. glomerata is known as a wild host plant for S. avenae and is also commercially planted. We found that high WSCs levels are responsible for the resistance of D. glomerata cultivars to specific S. avenae clones. The minimum level of WSCs conferring resistance to D. glomerata cultivars was 1.7% dw. Cultivars with a WSC content of 2.2% or higher were resistant to S. avenae and did not allow reproduction. Our results further indicate that sfS modulate to some extend host plant cultivar adaptation in S. avenae. This is the first study revealing the importance of WSCs for aphid performance. Cocksfoot cultivars with a high content of WSCs might be therefore considered for aphid control or used for resistance breeding in this and other grass species, including cereals.
    PLoS ONE 01/2013; 8(1):e54327. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cocoa agroforests can significantly support biodiversity, yet intensification of farming practices is degrading agroforestry habitats and compromising ecosystem services such as biological pest control. Effective conservation strategies depend on the type of relationship between agricultural matrix, biodiversity and ecosystem services, but to date the shape of this relationship is unknown. We linked shade index calculated from eight vegetation variables, with insect pests and beneficial insects (ants, wasps and spiders) in 20 cocoa agroforests differing in woody and herbaceous vegetation diversity. We measured herbivory and predatory rates, and quantified resulting increases in cocoa yield and net returns. We found that number of spider webs and wasp nests significantly decreased with increasing density of exotic shade tree species. Greater species richness of native shade tree species was associated with a higher number of wasp nests and spider webs while species richness of understory plants did not have a strong impact on these beneficial species. Species richness of ants, wasp nests and spider webs peaked at higher levels of plant species richness. The number of herbivore species (mirid bugs and cocoa pod borers) and the rate of herbivory on cocoa pods decreased with increasing shade index. Shade index was negatively related to yield, with yield significantly higher at shade and herb covers<50%. However, higher inputs in the cocoa farms do not necessarily result in a higher net return. In conclusion, our study shows the importance of a diverse shade canopy in reducing damage caused by cocoa pests. It also highlights the importance of conservation initiatives in tropical agroforestry landscapes.
    PLoS ONE 01/2013; 8(3):e56115. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The complex interactions among the maize pest Western Corn Rootworm (WCR), Glomus intraradices (GI-recently renamed Rhizophagus intraradices) and the microbial communities in both rhizosphere and endorhiza of maize have been investigated in view of new pest control strategies. In a greenhouse experiment, different maize treatments were established: C (control plants), W (plants inoculated with WCR), G (plants inoculated with GI), GW (plants inoculated with GI and WCR). After 20 days of WCR root feeding, larval fitness was measured. Dominant arbuscular mycorrhizal fungi (AMF) in soil and maize endorhiza were analyzed by cloning of 18S rRNA gene fragments of AMF, restriction fragment length polymorphism and sequencing. Bacterial and fungal communities in the rhizosphere and endorhiza were investigated by denaturing gradient gel electrophoresis of 16S rRNA gene and ITS fragments, PCR amplified from total community DNA, respectively. GI reduced significantly WCR larval development and affected the naturally occurring endorhiza AMF and bacteria. WCR root feeding influenced the endorhiza bacteria as well. GI can be used in integrated pest management programs, rendering WCR larvae more susceptible to predation by natural enemies. The mechanisms behind the interaction between GI and WCR remain unknown. However, our data suggested that GI might act indirectly via plant-mediated mechanisms influencing the endorhiza microbial communities.
    Frontiers in Microbiology 01/2013; 4:357. · 3.90 Impact Factor
  • Katharina Lohaus, Stefan Vidal
    [Show abstract] [Hide abstract]
    ABSTRACT: Cereal aphids (Homoptera: Aphididae) are a periodical threat to winter wheat (Triticum aestivum L.) production worldwide, and outbreaks have been mainly related to increasing inputs of mineral fertilizers. The hypothesis of lower aphid abundance under organic fertilizer treatments, however, has not been tested at the species-specific level. In a 4-year study, we examined cereal aphid populations and plant parameters (dry biomass and nitrogen content) in winter wheat fields under low (legume-based), intermediate (legume-based plus organic liquid manure), and high (mineral) nitrogen intensities; low and intermediate intensities are characteristic of organic fields, while high intensities are inherent in conventional farming systems. Aphid species differed markedly in their response to fertilizer treatment. Unexpectedly, legume-based organic fields were related to higher abundances of the ear-colonizing species Sitobion avenae (F.), whereas manure-fertilized organic fields and conventional fields had significantly higher abundances of Metopolophium dirhodum (Wlk.) and Rhopalosiphum padi (L.). Nitrogen concentration of winter wheat increased with fertilizer intensity, and total aphid abundance (all species) was positively correlated with nitrogen content of grains in manure-fertilized organic fields and conventional fields, but was not correlated in legume-based organic fields dominated by S. avenae (89–96 % of the aphid community). Collectively, we demonstrate strong bottom-up effects that result in an improved performance of S. avenae in low-input systems. As total aphid abundance (all species) simultaneously decreased in legume-based organic fields, crop managers risk to underestimate pest damage by ignoring the impact of a single species, S. avenae, which has the greatest potential to reduce crop yield.
    Organic Agriculture. 01/2013; 3(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Agricultural intensification has been shown to result in a decline in biodiversity across many taxa, but the changes in community structure and species interactions remain little understood. We have analysed and compared the structure of feeding interactions for cereal aphids and their primary and secondary parasitoids in organically and conventionally managed winter wheat fields using quantitative food web metrics (interaction evenness, generality, vulnerability, link density). Despite little variation in the richness of each trophic group, food web structures between the two farming systems differed remarkably. In contrast to common expectations, aphids and primary parasitoids were characterized by (1) a higher evenness of interaction frequencies (interaction evenness) in conventional fields, which cascaded to interactions at the next trophic level, with (2) a higher interaction evenness, (3) a higher ratio of primary parasitoid taxa per secondary parasitoid (generality) and (4) a higher link density. Aphid communities in the organically managed fields almost exclusively consisted of a single ear-colonizing species, Sitobion avenae, while highly fertilized conventional fields were mainly infested by leaf-colonizing aphids that benefit from the nutritional status of winter wheat. In conclusion, agricultural intensification appears to foster the complexity of aphid-parasitoid food webs, thereby not supporting the general expectation on the importance of organic farming practices for species richness and food web complexity.
    Oecologia 06/2012; · 3.01 Impact Factor
  • Mario Schumann, Stefan Vidal
    [Show abstract] [Hide abstract]
    ABSTRACT: 1 Despite the increasing economic importance of root feeding pests such as the western corn rootworm (WCR) Diabrotica virgifera virgifera, basic parameters about their below ground biology are only partly understood. The present study investigated the dispersal and distribution of WCR larvae in the maize root system during their development at two growth stages of maize (BBCH 13–14 and BBCH 17–18). 2 Dispersal of the WCR larvae increased as they developed; the larvae moved off their original place of emergence and into deeper soil layers. Overall, changes in the horizontal distribution of the larvae were more extensive than changes in the vertical distribution. 3 The spatial analysis of distance indices revealed that the larvae had an aggregative distribution throughout their development. The feeding site of larvae in the root system was determined by the stage of larval development. Initially, WCR larvae started feeding in close proximity to their emergence location and moved to more developed root tissue towards the end of their development. 4 Differences in root phenology mainly influenced the distribution of the larvae at the end of their development, when larvae exhibited increased vertical movement at a later growth stage of maize. 5 The mechanisms of these distributional changes and the implications for the management of WCR larvae are discussed, especially with regard to chemical control, because fewer larvae are expected to be targeted at a later growth stage of maize.
    Agricultural and Forest Entomology 05/2012; 14(4):331-339. · 1.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The western corn rootworm (WCR) is one of the economically most important pests of maize. A better understanding of microbial communities associated with guts and eggs of the WCR is required in order to develop new pest control strategies, and to assess the potential role of the WCR in the dissemination of microorganisms, e.g., mycotoxin-producing fungi. Total community (TC) DNA was extracted from maize rhizosphere, WCR eggs, and guts of larvae feeding on maize roots grown in three different soil types. Denaturing gradient gel electrophoresis (DGGE) and sequencing of 16S rRNA gene and ITS fragments, PCR-amplified from TC DNA, were used to investigate the fungal and bacterial communities, respectively. Microorganisms in the WCR gut were not influenced by the soil type. Dominant fungal populations in the gut were affiliated to Fusarium spp., while Wolbachia was the most abundant bacterial genus. Identical ribosomal sequences from gut and egg samples confirmed a transovarial transmission of Wolbachia sp. Betaproteobacterial DGGE indicated a stable association of Herbaspirillum sp. with the WCR gut. Dominant egg-associated microorganisms were the bacterium Wolbachia sp. and the fungus Mortierella gamsii. The soil type-independent composition of the microbial communities in the WCR gut and the dominance of only a few microbial populations suggested either a highly selective environment in the gut lumen or a high abundance of intracellular microorganisms in the gut epithelium. The dominance of Fusarium species in the guts indicated WCR larvae as vectors of mycotoxin-producing fungi. The stable association of Herbaspirillum sp. with WCR gut systems and the absence of corresponding sequences in WCR eggs suggested that this bacterium was postnatally acquired from the environment. The present study provided new insights into the microbial communities associated with larval guts and eggs of the WCR. However, their biological role remains to be explored.
    PLoS ONE 01/2012; 7(10):e44685. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Larvae of the Western Corn Rootworm (WCR) feeding on maize roots cause heavy economical losses in the US and in Europe. New or adapted pest management strategies urgently require a better understanding of the multitrophic interaction in the rhizosphere. This study aimed to investigate the effect of WCR root feeding on the microbial communities colonizing the maize rhizosphere. In a greenhouse experiment, maize lines KWS13, KWS14, KWS15 and MON88017 were grown in three different soil types in presence and in absence of WCR larvae. Bacterial and fungal community structures were analyzed by denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene and ITS fragments, PCR amplified from the total rhizosphere community DNA. DGGE bands with increased intensity were excised from the gel, cloned and sequenced in order to identify specific bacteria responding to WCR larval feeding. DGGE fingerprints showed that the soil type and the maize line influenced the fungal and bacterial communities inhabiting the maize rhizosphere. WCR larval feeding affected the rhiyosphere microbial populations in a soil type and maize line dependent manner. DGGE band sequencing revealed an increased abundance of Acinetobacter calcoaceticus in the rhizosphere of several maize lines in all soil types upon WCR larval feeding. The effects of both rhizosphere and WCR larval feeding seemed to be stronger on bacterial communities than on fungi. Bacterial and fungal community shifts in response to larval feeding were most likely due to changes of root exudation patterns. The increased abundance of A. calcoaceticus suggested that phenolic compounds were released upon WCR wounding.
    PLoS ONE 01/2012; 7(5):e37288. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Local and landscape-scale agricultural intensification is a major driver of global biodiversity loss. Controversially discussed solutions include wildlife-friendly farming or combining high-intensity farming with land-sparing for nature. Here, we integrate biodiversity and crop productivity data for smallholder cacao in Indonesia to exemplify for tropical agroforests that there is little relationship between yield and biodiversity under current management, opening substantial opportunities for wildlife-friendly management. Species richness of trees, fungi, invertebrates, and vertebrates did not decrease with yield. Moderate shade, adequate labor, and input level can be combined with a complex habitat structure to provide high biodiversity as well as high yields. Although livelihood impacts are held up as a major obstacle for wildlife-friendly farming in the tropics, our results suggest that in some situations, agroforests can be designed to optimize both biodiversity and crop production benefits without adding pressure to convert natural habitat to farmland.
    Proceedings of the National Academy of Sciences 05/2011; 108(20):8311-6. · 9.81 Impact Factor
  • Source
    D H B Bisseleua, Stefan Vidal
    [Show abstract] [Hide abstract]
    ABSTRACT: The spatio-temporal distribution of Sahlbergella singularis Haglung, a major pest of cacao trees (Theobroma cacao) (Malvaceae), was studied for 2 yr in traditional cacao forest gardens in the humid forest area of southern Cameroon. The first objective was to analyze the dispersion of this insect on cacao trees. The second objective was to develop sampling plans based on fixed levels of precision for estimating S. singularis populations. The following models were used to analyze the data: Taylor's power law, Iwao's patchiness regression, the Nachman model, and the negative binomial distribution. Our results document that Taylor's power law was a better fit for the data than the Iwao and Nachman models. Taylor's b and Iwao's β were both significantly >1, indicating that S. singularis aggregated on specific trees. This result was further supported by the calculated common k of 1.75444. Iwao's α was significantly <0, indicating that the basic distribution component of S. singularis was the individual insect. Comparison of negative binomial (NBD) and Nachman models indicated that the NBD model was appropriate for studying S. singularis distribution. Optimal sample sizes for fixed precision levels of 0.10, 0.15, and 0.25 were estimated with Taylor's regression coefficients. Required sample sizes increased dramatically with increasing levels of precision. This is the first study on S. singularis dispersion in cacao plantations. Sampling plans, presented here, should be a tool for research on population dynamics and pest management decisions of mirid bugs on cacao.
    Environmental Entomology 02/2011; 40(1):111-9. · 1.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The grain aphid Sitobion avenae F., one of the major pest aphids of cereals in Central Europe, exhibits colour polymorphism, even within the same clones. Although there is evidence that green and brown morphs of S. avenae contain different carotenoids, the mechanisms determining the induction of colour morphs are unknown. The common understanding is that the formation of colour morphs is controlled by light and affected by genetic and environmental factors and by host plant species. So far, there is no unequivocal evidence that light intensity, photoperiod, or a mixture of several variables are involved in the induction of S. avenae colour formation, resulting in the induction of S. avenae colour formation and carotenoid synthesis. Here we determined the effect of light intensity on the colour formation and performance of ten clones of S. avenae with experiments that controlled for the effects of host plant and genetic factors. We found that some clones remained green under all test conditions. In other clones, colour morph formation was controlled by light. The synthesis of carotenoids correlated with changes in colour formation. Host plant did not affect colour formation in the ten clones studied. Although colour of the aphid clones did not affect their performance, high light intensity increased the fecundity and fresh weight of S. avenae clones, while low light intensity stimulated the production of alatae.
    Journal of insect physiology 12/2010; 56(12):1999-2005. · 2.24 Impact Factor
  • M Eickermann, B Ulber, S Vidal
    [Show abstract] [Hide abstract]
    ABSTRACT: The cabbage stem weevil (Ceutorhynchus pallidactylus (Mrsh.)) (Col., Curculionidae) is a serious pest of winter oilseed rape (Brassica napus L. var. oleifera Metzg.) in central and northern Europe. Although host-plant resistance is a key tool in integrated pest management systems, resistant genotypes are not yet available for this species. Resynthesized rapeseed lines (B. oleracea L.×B. rapa L.) are broadening the genetic diversity and might have potential as sources of resistance to pest insects. The host quality, of nine resynthesized rapeseed lines and six genotypes of B. napus to cabbage stem weevil, was evaluated in laboratory screening tests and in a semi-field experiment. In dual-choice oviposition tests, female C. pallidactylus laid significantly fewer eggs on five resyntheses and on swede cv 'Devon Champion' than on the moderately susceptible oilseed rape cv 'Express', indicating a lower host quality of these genotypes. Results of laboratory screenings were confirmed in a semi-field experiment, in which twelve genotypes were exposed to C. pallidactylus females. The number of larvae was significantly lower in two resyntheses and in cv 'Devon Champion' than in oilseed rape cv WVB 9. The total, as well as individual, glucosinolate (GSL) content in the leaves differed substantially among the genotypes tested. The amount of feeding by larvae of C. pallidactylus, as measured by a stem-injury coefficient, was positively correlated with the indolyl GSL compounds 3-indolylmethyl and 4-methoxy-3-indolylmethyl, and with the aromatic GSL 2-phenylethyl, whereas it was negatively correlated with 4-hydroxy-3-indolylmethyl. Thus, the composition and concentration of GSL compounds within the plant tissue might be a key factor in breeding for pest resistance in oilseed rape.
    Bulletin of entomological research 11/2010; 101(3):287-94. · 1.99 Impact Factor
  • B Kurtz, P Karlovsky, S Vidal
    [Show abstract] [Hide abstract]
    ABSTRACT: A greenhouse experiment was conducted to evaluate the effect of soil-dwelling larvae of the western corn rootworm, Diabrotica virgifera virgifera LeConte, on infection of maize roots by the mycotoxin-producing plant-pathogenic fungus, Fusarium verticillioides (Saccardo) Nirenberg (synonym=Fusarium moniliforme Sheldon). The time and order of application of F. verticillioides and western corn rootworm were varied in three different treatments to investigate the influence of timing on root colonization of F. verticillioides and western corn rootworm larval development. Root feeding by western corn rootworm larvae increased root colonization by F. verticillioides (as determined by real-time polymerase chain reaction) up to 50-fold when a high inoculum (10(7) spores/plant) of F. verticillioides was applied before western corn rootworm eggs were added. This effect was stronger the earlier F. verticillioides was applied relative to the time of western corn rootworm egg application but was only significant for the high F. verticillioides inoculum density treatment; F. verticillioides colonization was not increased when a low F. verticillioides inoculum density (10(6) spores/plant) was applied. F. verticillioides slightly suppressed larval development in that the ratio of second- to third-instar larvae was higher in treatments with F. verticillioides than without F. verticillioides. F. verticillioides reduced western corn rootworm head capsule width when applied before or simultaneously with western corn rootworm. The results of this study are discussed focusing on conditions that favor root colonization by F. verticillioides and its influence on western corn rootworm larval development.
    Environmental Entomology 10/2010; 39(5):1532-8. · 1.31 Impact Factor
  • LARA R. JABER, STEFAN VIDAL
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. Fungal endophytes are ubiquitous associates of virtually all plant species. Although many studies have focused on the role of these microorganisms as mediators of plant–herbivore interactions, these studies have usually been conducted using short-term experiments.2. Truly effective defences against herbivores may require normal functioning of the plant, as excised leaves may be less resistant as compared with those still attached to the plant. Yet, most studies investigating possible effects of endophytes in conferring host resistance to herbivores have been conducted with plant parts rather than intact plants.3. Using the root endophytic fungus (Acremonium strictum)—broad bean (Vicia faba)—generalist herbivore (Helicoverpa armigera) model, we conducted experiments to examine whether endophyte effects on herbivory would depend on the experimental setting used in the investigation and whether they would translate into a subsequent generation of the herbivore.4. Acremonium strictum negative effects on the fitness of H. armigera first generation were more evident when the larvae foraged freely on inoculated intact whole plants than when offered leaf discs of inoculated plants. Furthermore, these effects were carried over into H. armigera second generation reared on an artificial diet.5. Acremonium strictum could not be re-isolated from V. faba leaves; hence direct contact between the endophyte and the insect could be excluded. Alternatively, loss of volatiles or inhibitory effects of compounds that were stronger in situ might have caused changes in larval feeding and performance on leaf discs as compared with intact plants, regardless of infection status.6. We suggest that the reduction in fitness parameters of H. armigera across two generations is caused indirectly via an endophyte-triggered reduction in plant quality.
    Ecological Entomology 01/2010; 35(1):25 - 36. · 1.95 Impact Factor

Publication Stats

372 Citations
95.59 Total Impact Points

Institutions

  • 2004–2014
    • Georg-August-Universität Göttingen
      • • Division of Agricultural Entomology
      • • Department of Crop Sciences
      • • Division of Plant Pathology and Plant Protection
      Göttingen, Lower Saxony, Germany
  • 2008
    • Institute of Agricultural Research for Development
      Jaúnde, Centre Region, Cameroon