Christian Steuer

Universität Heidelberg, Heidelberg, Baden-Wuerttemberg, Germany

Are you Christian Steuer?

Claim your profile

Publications (6)16.7 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: New chemotherapeutics against Dengue virus and related flaviviruses are of growing interest in antiviral drug discovery. The viral serine protease NS2B-NS3 is a promising target for the development of such agents. Drug-like inhibitors of this protease with high affinity to the target are not available at the moment. The present work describes the discovery of new retro di- and tripeptide hybrids that do not necessarily require an electrophilic "warhead" to achieve affinities in the low micromolar range. The most active sequence in this series is the tripeptide R-Arg-Lys-Nle-NH(2). By variation of the N-terminal groups (R) it could be shown that the previously described arylcyanoacrylamide moiety is a preferable group in this position. Retro tripeptide hybrids were found to be more active and more selective than retro dipeptide hybrids. A significant selectivity towards the Dengue virus protease could be shown in a counterscreen with thrombin and the West Nile virus protease. Alternative sequences to R-Arg-Lys-Nle-NH(2) did not have higher affinities towards the Dengue virus protease, similar to retro-inverse sequences with D-lysine and D-arginine residues. The results of a competition assay with the known inhibitor aprotinin indicate that the N-terminal arylcyanoacrylamide residue of this compound class binds near the catalytic center of the enzyme.
    Antiviral Research 04/2012; 94(1):72-79. · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The 3-aryl-2-cyanoacrylamide scaffold was designed as core pharmacophore for inhibitors of the Dengue and West Nile virus serine proteases (NS2B-NS3). A total of 86 analogs was prepared to study the structure-activity relationships in detail. Thereby, it turned out that the electron density of the aryl moiety and the central double bond have a crucial influence on the activity of the compounds, whereas the influence of substituents of the amide residue is less relevant. The para-hydroxy substituted analog was found to be the most potent inhibitor in this series with a K(i)-value of 35.7 μM at the Dengue and 44.6 μM at the West Nile virus protease. The aprotinin competition assay demonstrates a direct interaction of the inhibitor molecule with active centre of the Dengue virus protease. The target selectivity was studied in a counterscreen with thrombin and found to be 2.8:1 in favor of DEN protease and 2.3:1 in favor of WNV protease, respectively.
    Bioorganic & Medicinal Chemistry 12/2011; 19(24):7318-7337. · 2.95 Impact Factor
  • Thomas Mendgen, Christian Steuer, Christian D Klein
    [Show abstract] [Hide abstract]
    ABSTRACT: Rhodanines and related five-membered heterocycles with multiple heteroatoms have recently gained a reputation of being unselective compounds that appear as "frequent hitters" in screening campaigns and therefore have little value in drug discovery. However, this judgment appears to be based mostly on anecdotal evidence. Having identified various rhodanines and related compounds in screening campaigns, we decided to perform a systematic study on their promiscuity. An amount of 163 rhodanines, hydantoins, thiohydantoins, and thiazolidinediones were synthesized and tested against several targets. The compounds were also characterized with respect to aggregation and electrophilic reactivity, and the binding modes of rhodanines and related compounds in published X-ray cocrystal structures were analyzed. The results indicate that the exocyclic, double bonded sulfur atom in rhodanines and thiohydantoins, in addition to other structural features, offers a particularly high density of interaction sites for polar interactions and hydrogen bonds. This causes a promiscuous behavior at concentrations in the "screening range" but should not be regarded as a general knockout criterion that excludes such screening hits from further development. It is suggested that special criteria for target affinity and selectivity are applied to these classes of compounds and that their exceptional and potentially valuable biomolecular binding properties are consequently exploited in a useful way.
    Journal of Medicinal Chemistry 11/2011; 55(2):743-53. · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of small molecule inhibitors of the viral protease is of considerable interest for the treatment of emergent flaviviral diseases such as Dengue or West Nile fever. Until today little progress has been made in finding drug-like compounds that inhibit the protease and provide a starting point for lead optimization. We describe here the initial steps of a drug discovery effort that focused on the styryl pharmacophore, combined with a ketoamide function to serve as electrophilic trap for the catalytic serine. This resulted in a fragment-like lead compound with reasonable target affinity and good ligand efficiency, which was extensively modified to explore structure-activity relationships. Selected compounds were cross-tested against the West Nile virus protease and thrombin, indicating that selectivity for one or more flaviviral proteases can be achieved. Finally, the antiviral activity of several protease inhibitors was confirmed in a cell-culture model of Dengue virus replication. The SAR presented here may serve as starting point for further drug discovery efforts with the aim of targeting flaviviral proteases.
    Bioorganic & medicinal chemistry 07/2011; 19(13):4067-74. · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this work was to perform a systematic study of the effect of nonionic detergents on the activity of the dengue virus NS2B-NS3 protease. To ensure a high activity of the protease, the assay procedures for the dengue virus and other flaviviral proteases published to date are performed in the presence of up to 35% glycerol, which does not represent the cellular physicochemical environment. In addition, the high viscosity of glycerol-containing solutions leads to various experimental problems in miniaturized assays. Using an internally quenched peptide substrate, the authors show that glycerol is not essential for enzymatic activity if certain nonionic detergents are added to the assay buffer. In addition, nonionic detergents may help to avoid false-positive screening results caused by "promiscuous" inhibitors. Other polyalcohols can substitute glycerol and have less effect on the viscosity of the assay buffer. The assay was used to screen a compound library and allowed the identification of small-molecular nonpeptidic inhibitors of dengue NS3 protease. Finally, the authors discuss the mode of action of nonionic detergents and the influence that they may have on the conformational properties of the NS2B-NS3 protease.
    Journal of Biomolecular Screening 10/2009; 14(9):1102-8. · 2.01 Impact Factor
  • Source
    Frontiers in Medicial Chemistry; 01/2009

Publication Stats

98 Citations
16.70 Total Impact Points


  • 2009–2012
    • Universität Heidelberg
      • • Institute of Pharmacy and Molecular Biotechnology (IPMB)
      • • Department of Molecular Virology
      Heidelberg, Baden-Wuerttemberg, Germany