Lee Miller

Pfizer Inc., New York City, New York, United States

Are you Lee Miller?

Claim your profile

Publications (2)7.3 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: A model was developed for predicting the influence of cyclodextrins (CDs) delivered as a physical mixture with drug on oral absorption. CDs are cyclic oligosaccharides which form inclusion complexes with many drugs and are often used as solubilizing agents. The purpose of this work is to compare the simulation predictions with in vitro as well as in vivo experimental results to test the model's ability to capture the influence of CD on key processes in the gastrointestinal (GI) tract environment. Dissolution and absorption kinetics of low solubility drugs (Naproxen and Nifedipine) were tested in the presence and absence of CD in a simulated gastrointestinal environment. Model predictions were also compared with in vivo experimental results (Glibenclamide and Carbamazepine) from the literature to demonstrate the model's ability to predict oral bioavailability. Comparisons of simulation and experimental results indicate that a model incorporating the influence of CD (delivered as a physical mixture) on dissolution kinetics and binding of neutral drug can predict trends in the influence of CD on bioavailability. Overall, a minimal effect of CD dosed as a physical mixture was observed and predicted. Modeling may aid in enabling rational design of CD containing formulations.
    Biotechnology and Bioengineering 10/2009; 105(2):421-30. · 3.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability to quantitatively predict the influence of a solubilization technology on oral absorption would be highly beneficial in rational selection of drug delivery technology and formulation design. Cyclodextrins (CDs) are cyclic oligosaccharides which form inclusion complexes with a large variety of compounds including drugs. There are many studies in the literature showing that complexation between CD and drug enhances oral bioavailability and some demonstrating failure of CD in bioavailability enhancement, but relatively little guidance regarding when CD can be used to enhance bioavailability. A model was developed based upon mass transport expressions for drug dissolution and absorption and a pseudo-equilibrium assumption for the complexation reaction with CD. The model considers neutral compound delivered as a physical mixture with CD in both immediate release (IR) and controlled release (CR) formulations. Simulation results demonstrated that cyclodextrins can enhance, have no effect, or hurt drug absorption when delivered as a physical mixture with drug. The predicted influence depends on interacting parameter values, including solubility, drug absorption constant, binding constant, CD:drug molar ratio, dose, and assumed volume of the intestinal lumen. In general, the predicted positive influence of dosing as a physical mixture with CD was minimal, alluding to the significance of dosing as a preformed complex. The model developed enabled examination of which physical and chemical properties result in oral absorption enhancement for neutral drug administered as a physical mixture with CD, demonstrating the utility of modeling the influence of a drug delivery agent (e.g., CD) on absorption for rational dosage form design.
    Biotechnology and Bioengineering 10/2009; 105(2):409-20. · 3.65 Impact Factor

Publication Stats

15 Citations
7.30 Total Impact Points

Institutions

  • 2009
    • Pfizer Inc.
      New York City, New York, United States