Yongping Wang

University of California, Davis, Davis, CA, United States

Are you Yongping Wang?

Claim your profile

Publications (4)22.94 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Non-canonical Wnt/planar cell polarity (PCP) signaling plays a primary role in the convergent extension that drives neural tube closure and body axis elongation. PCP signaling gene mutations cause severe neural tube defects (NTDs). However, the role of canonical Wnt/β-catenin signaling in neural tube closure and NTDs remains poorly understood. This study shows that conditional gene targeting of β-catenin in the dorsal neural folds of mouse embryos represses the expression of the homeobox-containing genes Pax3 and Cdx2 at the dorsal posterior neuropore (PNP), and subsequently diminishes the expression of the Wnt/β-catenin signaling target genes T, Tbx6 and Fgf8 at the tail bud, leading to spina bifida aperta, caudal axis bending and tail truncation. We demonstrate that Pax3 and Cdx2 are novel downstream targets of Wnt/β-catenin signaling. Transgenic activation of Pax3 cDNA can rescue the closure defect in the β-catenin mutants, suggesting that Pax3 is a key downstream effector of β-catenin signaling in the PNP closure process. Cdx2 is known to be crucial in posterior axis elongation and in neural tube closure. We found that Cdx2 expression is also repressed in the dorsal PNPs of Pax3-null embryos. However, the ectopically activated Pax3 in the β-catenin mutants cannot restore Cdx2 mRNA in the dorsal PNP, suggesting that the presence of both β-catenin and Pax3 is required for regional Cdx2 expression. Thus, β-catenin signaling is required for caudal neural tube closure and elongation, acting through the transcriptional regulation of key target genes in the PNP.
    Development 11/2013; · 6.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian olfactory epithelium (OE) has a unique stem cell or progenitor niche, which is responsible for the constant peripheral neurogenesis throughout the lifespan of the animal. However, neither the signals that regulate the behavior of these cells nor the lineage properties of the OE stem cells are well understood. Multiple Wnt signaling components exhibit dynamic expression patterns in the developing OE. We generated Wnt signaling reporter TOPeGFP transgenic mice and found TOPeGFP activation predominantly in proliferating Sox2(+) OE basal cells during early postnatal development. FACS-isolated TOPeGFP(+) OE basal cells are required, but are not sufficient, for formation of spheres. Wnt3a significantly promotes the proliferation of the Sox2(+) OE sphere cells. Wnt-stimulated OE sphere cells maintain their multipotency and can differentiate into most types of neuronal and non-neuronal epithelial cells. Also, Wnt activators shift the production of differentiated cells toward olfactory sensory neurons. Moreover, TOPeGFP(+) cells are robustly increased in the adult OE after injury. In vivo administration of Wnt modulators significantly alters the regeneration potential. This study demonstrates the role of the canonical Wnt signaling pathway in the regulation of OE stem cells or progenitors during development and regeneration.
    Journal of Cell Science 05/2011; 124(Pt 9):1553-63. · 5.88 Impact Factor
  • Source
    Yongping Wang, Lanying Song, Chengji J Zhou
    [Show abstract] [Hide abstract]
    ABSTRACT: The canonical Wnt/β-catenin signaling pathway has implications in early facial development; yet, its function and signaling mechanism remain poorly understood. We report here that the frontonasal and upper jaw primordia cannot be formed after conditional ablation of β-catenin with Foxg1-Cre mice in the facial ectoderm and the adjacent telencephalic neuroepithelium. Gene expression of several cell-survival and patterning factors, including Fgf8, Fgf3, and Fgf17, is dramatically diminished in the anterior neural ridge (ANR, a rostral signaling center) and/or the adjacent frontonasal ectoderm of the β-catenin conditional mutant mice. In addition, Shh expression is diminished in the ventral telencephalon of the mutants, while Tcfap2a expression is less affected in the facial primordia. Apoptosis occurs robustly in the rostral head tissues following inactivation of Fgf signaling in the conditional mutants. Consequently, the upper jaw, nasal, ocular and telencephalic structures are absent, but the tongue and mandible are relatively developed in the conditional mutants at birth. Using molecular biological approaches, we demonstrate that the Fgf8 gene is transcriptionally targeted by Wnt/β-catenin signaling during early facial and forebrain development. Furthermore, we show that conditional gain-of-function of β-catenin signaling causes drastic upregulation of Fgf8 mRNA in the ANR and the entire facial ectoderm, which also arrests facial and forebrain development. Taken together, our results suggest that canonical Wnt/β-catenin signaling is required for early development of the mammalian face and related head structures, which mainly or partly acts through the initiation and modulation of balanced Fgf signaling activity.
    Developmental Biology 11/2010; 349(2):250-60. · 3.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neither the mechanisms that govern lip morphogenesis nor the cause of cleft lip are well understood. We report that genetic inactivation of Lrp6, a co-receptor of the Wnt/beta-catenin signaling pathway, leads to cleft lip with cleft palate. The activity of a Wnt signaling reporter is blocked in the orofacial primordia by Lrp6 deletion in mice. The morphological dynamic that is required for normal lip formation and fusion is disrupted in these mutants. The expression of the homeobox genes Msx1 and Msx2 is dramatically reduced in the mutants, which prevents the outgrowth of orofacial primordia, especially in the fusion site. We further demonstrate that Msx1 and Msx2 (but not their potential regulator Bmp4) are the downstream targets of the Wnt/beta-catenin signaling pathway during lip formation and fusion. By contrast, a ;fusion-resistant' gene, Raldh3 (also known as Aldh1a3), that encodes a retinoic acid-synthesizing enzyme is ectopically expressed in the upper lip primordia of Lrp6-deficient embryos, indicating a region-specific role of the Wnt/beta-catenin signaling pathway in repressing retinoic acid signaling. Thus, the Lrp6-mediated Wnt signaling pathway is required for lip development by orchestrating two distinctively different morphogenetic movements.
    Development 10/2009; 136(18):3161-71. · 6.60 Impact Factor