Zongsuo Liang

Northwest University, Northwest Harborcreek, Pennsylvania, United States

Are you Zongsuo Liang?

Claim your profile

Publications (39)63.48 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Salvia miltiorrhiza is a significant source of bioactive compounds providing human health effects. Here, we surveyed root yield and the active constituents' divergences of second generation S. miltiorrhiza (SP2) responding to a spaceflight environment. High-performance liquid chromatography was conducted for the comprehensive constituents' characterizations of 28 SP2 lines (224 individuals) and the ground control (eight individuals). The results showed that the mean fresh and dry weight of roots ranged from 116 to 172 g and 25 to 119 g, respectively, in SP2 lines. In addition, the mean contents of four tanshinone compounds (tanshinone I, tanshinone IIA, cryptotanshinone, and dihydrotanshinone I) of 28 SP2 lines varied from 0.32 to 1.04 mg · g(-1), 0.47 to 2.39 mg · g(-1), 0.25 to 1.60 mg · g(-1), and 0.53 to 1.67 mg · g(-1), respectively. Except for salvianolic acid B, which varied drastically from 72 % to 201 % of the ground control treatment, the other six phenolic acid contents of the 28 SP2 lines all increased after spaceflight. Principal component analysis was performed to obtain an overview of the distribution of all samples, and score plots clearly separated the SP2 accessions from ground controls. Moreover, a positive relationship was observed between tanshinone I and tanshinone IIA (r = 0.790, p < 0.01), and rosmarinic acid was positively correlated with salvianolic acid B (r = 0.728, p < 0.01). In conclusion, this study demonstrated that a spaceflight environment induced SP2 accessions remarkably in the variation of root yield and active constituent content.
    Planta Medica 08/2014; · 2.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Our study found that except Novosphingobium resinovorum (B5) Salvia miltiorrhiza root endophytic bacteria Pseudomonas brassicacearum sub sp. neoaurantiaca (B1), Rhizobium radiobacter (B2), Pseudomonas thivervalensis (B3), Pseudomonas frederiksbergensis (B4) significantly improved the activity of key enzymes 3-hydroxy-3-methyglutary1-CoA reductase and 1-deoxy-d-xylulose-5-phosphate synthase in the biosynthetic pathway of tanshinones. Specifically, HMGR activity with B1 treatment increased 2.1-fold that of control, 1-deoxy-d-xylulose-5-phosphate synthase activity with B2 treatment increased 5.0-fold that of control, which caused a significant increase in tanshinone content in the hairy roots. The dihydrotanshinone I and cryptotanshinone content under B1 treatment increased 19.2-fold and 11.3-fold, respectively, and total tanshinone content increased 3.7-fold that of control. The five endophytic bacteria B1, B2, B3, B4 and B5 all significantly decreased phenylalanine ammonia-lyase and tyrosine aminotransferase activity in hairy roots, of which, B3 treatment decreased phenylalanine ammonia-lyase activity by 46.2 %, and B2 treatment decreased tyrosine aminotransferase activity by 44.7 % compared with the control. Each of the five endophytic bacteria decomposed rosmarinic acid and salvianolic acid B, which caused a significant decrease in rosmarinic acid and salvianolic acid B content in hairy roots, with B2 treatment decreasing rosmarinic acid and salvianolic acid B content by 94.5 and 89.0 %, respectively, compared with the control. The five endophytic bacteria also inhibited the growth of S. miltiorrhiza hairy roots, of which, B2 and B4 treatment decreased hairy root biomass by 55.2 and 51.3 %, respectively, compared with the control, while hairy roots promoted the growth of B4 and B5 and inhibited the growth of B1 and B3.
    Acta Physiologiae Plantarum 05/2014; 36(5). · 1.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fermentation broth and mycelium pellet of Streptomyces pactum Act12 (Act12) may promote the accumulation of soluble sugar when added to Salvia miltiorrhiza hairy roots, increasing the accumulation level by as much as 23.20 % compared with the control; it may also inhibit the accumulation of soluble protein in the hairy roots, decreasing it by as much as 17.96 % compared with the control. The ACT12 also has a certain promotional effect on the growth of hairy root at an appropriate concentration of elicitors and upregulates the expression of genes 3-hydroxy-3-methyglutary1-CoA reductase (HMGR), 1-deoxy-D-xylulose 5-phosphate synthase (DXS), 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), and geranylgeranyl diphosphate synthase (GGPPS). Among these effects, that of the HMGR gene expression is as high as 33.66 times that of the control, indicating that the test Streptomyces pactum may efficiently adjust the secondary metabolism of S. miltiorrhiza at the level of gene transcription, thereby greatly increasing the accumulation level of tanshinone in the hairy roots; among which, the cryptotanshinone levels increased most significantly, as much as 33.63 times that of the control, and the total tanshinone levels were 12.61 times that of the control.
    Applied biochemistry and biotechnology 04/2014; · 1.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plant secondary metabolites play an important role in the fields of food, medicine, agriculture and biofuels. Secondary metabolites are an important focus of crop breeding and metabolic engineering research. However, our understanding of secondary metabolism is far from complete, particularly in non-model plants. Functional genomics, which includes transcriptomics, proteomics, and metabolomics, opens a new avenue for deciphering secondary metabolism. Here we review the applications of functional genomics in secondary metabolism, including the discovery of novel genes, the identification of gene function, and the detection of novel pathways of the metabolic network. Results from these studies will accelerate our understanding of elicitation mechanism of secondary metabolism and how plants interact with their environment, ultimately improving the production of secondary metabolites by means of metabolic engineering. This article is protected by copyright. All rights reserved
    Engineering in Life Sciences 03/2014; · 1.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sanchi (Panax notoginseng) root has been widely used as traditional herb to stanch blood, disperse gore and reduce pain in China for centuries. However, the nutritional information about its seed was unknown. Sanchi seeds obtained from Yunnan Province were analyzed for their nutritional composition, fatty acid, amino acid profile and sugar contents. Sanchi seeds were abundant in fats (46.35 %) and proteins (23.90 %). Notably, seven fatty acid compositions were determined and abundant in unsaturated fatty acid (99.56 %), containing 95.71 % oleic acid. Sanchi seed proteins were rich in glutenin, globulin and albumin (28.63, 27.83 and 26.81 %, respectively). Sanchi seed contain 17 kinds of amino acids, of which nine were essential amino acids, accounting for 41.30 %. These nutritional compositions indicate that Sanchi seed has the potentiality to be exploited as human edible oil, industrial use, new medicine or healthcare products for diabetes patients due to low sugar content.
    Genetic Resources and Crop Evolution 03/2014; 61(3). · 1.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants for its therapeutic effects. In the present study, morphological traits, ISSR (inter-simple sequence related) and SRAP (sequence-related amplified polymorphism) markers were used to analyze the genetic diversity of 59 S. miltiorrhiza phenotypes. Out of the 100 ISSR primers and 100 SRAP primer combinations screened, 13 ISSRs and 7 SRAPs were exploited to evaluate the level of polymorphism and discriminating capacity. The results showed that the 13 ISSRs generated 190 repeatable amplified bands, of which 177 (93.2%) were polymorphic, with an average of 13.6 polymorphic fragments per primer. The 7 SRAPs produced 286 repeatable amplified bands, of which 266 (93.4%) were polymorphic, with an average of 38.1 polymorphic fragments per primer. Cluster analysis readily separated different morphological accessions, wild and cultivated controls based on morphological traits, ISSR and SRAP markers. The study indicated that morphological traits, ISSR and SRAP markers were reliable and effective for assessing the genetic diversity of phenotypic S. miltiorrhiza accessions. The overall results suggested that the introduction of genetic variation from morphology-based germplasms enlarged the genetic base for the collection, conservation and further breeding program of S. miltiorrhiza germplasm.
    Biochemical Systematics and Ecology 01/2014; 55:84–92. · 1.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rosmarinic acid and salvianolic acid B are two important phenolic compounds with therapeutic properties in Salvia miltiorrhiza Bunge. The biosynthesis of rosmarinic acid is initiated by two parallel pathways, namely the phenylpropanoid pathway and the tyrosine-derived pathway. Salvianolic acid B is a structural dimer of rosmarinic acid and is believed to be derived from rosmarinic acid. In the current study, methyl jasmonate (MeJA) and hyphal extracts from fungi were used as elicitors to examine the relationship between enzymes in the two parallel pathways and accumulation of phenolic compounds in S. miltiorrhiza hairy root cultures. The results showed that accumulations of rosmarinic acid, salvianolic acid B and total phenolics were enhanced by MeJA while suppressed by fugal extracts. Responses of enzymes in the tyrosine-derived pathway, at both the gene transcript and enzyme activity levels, showed a better consistency with alterations of phenolic compounds content after the two elicitors treated. Our study implied that compared with enzymes in the phenylpropanoid pathway, enzymes in the tyrosine-derived pathway are more correlated to rosmarinic acid and salvianolic acid B biosynthesis in S. miltiorrhiza hairy roots.
    Journal of Bioscience and Bioengineering 11/2013; · 1.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Salvia miltiorrhiza Bunge (Lamiaceae) root, generally called Danshen, is an important herb in Chinese medicine widely used for treatment of various diseases. Phenolic acids in S. miltiorrhiza, as important effective compounds, have become a new research focus in plant secondary metabolism in recent years. This review summarizes the recent advances in the regulation of water-soluble phenolic acid biosynthesis in S. miltiorrhiza via regulators at molecular level, such as the phenylalanine ammonia-lyase gene (PAL), cinnamic acid 4-hydroxylase gene (C4H), 4-coumarate-CoA ligase gene (4CL), tyrosine aminotransferase gene (TAT), 4-hydroxyphenylpyruvate reductase gene (HPPR), 4-hydroxyphenylpyruvated dioxygenase gene (HPPD), hydroxycinnamoyl-CoA:hydroxyphenyllactate hydroxycinnamoyl transferase-like gene (RAS-like), and v-myb avian myeloblastosis viral oncogene homolog 4 gene (MYB4), and production of anthocyanin pigmentation 1 gene (AtPAP1), and via regulators at cell level, such as methyl jasmonate, salicylic acid, abscisic acid, polyamines, metal ions, hydrogen peroxide (H2O2), ultraviolet-B radiation, and yeast elicitor.
    Applied biochemistry and biotechnology 05/2013; · 1.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proper preservation of transgenes and transgenic materials is important for wider use of transgenic technology in plants. Here, we report stable preservation and faithful expression of a transgene via artificial seed technology in alfalfa. DNA constructs containing the uid reporter gene coding for β-glucuronidase (GUS) driven by a 35S promoter or a tCUP promoter were introduced into alfalfa via Agrobacterium-mediated genetic transformation. Somatic embryos were subsequently induced from transgenic alfalfa plants via in vitro technology. These embryos were treated with abscisic acid to induce desiccation tolerance and were subjected to a water loss process. After the desiccation procedure, the water content in dried embryos, or called artificial seeds, was about 12-15% which was equivalent to that in true seeds. Upon water rehydration, the dried somatic embryos showed high degrees of viability and exhibited normal germination. Full plants were subsequently developed and recovered in a greenhouse. The progeny plants developed from artificial seeds showed GUS enzyme activity and the GUS expression level was comparable to that of plants developed from somatic embryos without the desiccation process. Polymerase chain reaction analysis indicated that the transgene was well retained in the plants and Southern blot analysis showed that the transgene was stably integrated in plant genome. The research showed that the transgene and the new trait can be well preserved in artificial seeds and the progeny developed. The research provides a new method for transgenic germplasm preservation in different plant species.
    PLoS ONE 01/2013; 8(5):e56699. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Drought resistance and recovery ability are two important requisites for plant adaptation to drought environments. Proline (Pro) metabolism has been a major concern in plant drought tolerance. However, roles of Pro metabolism in plant recovery ability from severe drought stress are largely unexplored. Periploca sepium Bunge has gained increasing attention for its adaptation to dry environments. Here, we investigated Pro metabolism in different tissues of P. sepium seedlings in the course of drought stress and recovery. We found that leaf Pro metabolism response during post-drought recovery was dependant on drought severity. Pro biosynthesis was down-regulated during recovery from -0.4 MPa but increased continually and notably during recovery from -1.0 MPa. Significant correlation between Pro concentration and Δ1-pyrroline-5-carboxylate synthetase activity indicates that Glutamate pathway is the predominant synthesis route during both drought and re-watering periods. Ornithine δ-aminotransferase activity was up-regulated significantly only during recovery from -1.0 MPa, suggesting positive contribution of ornithine pathway to improving plant recovery capacity from severe drought. In addition to up-regulation of biosynthesis, Pro transport from stems and roots also contributed to high Pro accumulation in leaves and new buds during recovery from -1.0 MPa, as indicated by the combined analysis of Pro concentration and its biosynthesis in stems, roots and new buds. Except its known roles as energy, carbon and nitrogen sources for plant rapid recovery, significant positive correlation between Pro concentration and total antioxidant activity indicates that Pro accumulation can also promote plant damage repair ability by up-regulating antioxidant activity during recovery from severe drought stress.
    PLoS ONE 01/2013; 8(7):e69942. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.
    PLoS ONE 01/2013; 8(9):e72806. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Consistent grain yield in drought environment has attracted wide attention due to global climate change. However, the important drought-related traits/genes in crops have been rarely reported. Many near-isogenic lines (NILs) of male sterile and fertile Salvia miltiorrhiza have been obtained in our previous work through testcross and backcross in continuous field experiments conducted in 2006-2009. Both segregating sterile and fertile populations were subjected to bulked segregant analysis (BSA) and amplified fragment length polymorphism (AFLP) with 384 and 170 primer combinations, respectively. One out of 14 AFLP markers (E9/M3246) was identified in treated fertile population as tightly linked to the drought stress gene with a recombination frequency of 6.98% and at a distance of 7.02 cM. One of 15 other markers (E2/M5357) was identified in a treated sterile population that is closely associated with the drought stress gene. It had a recombination frequency of 4.65% and at a distance of 4.66 cM. Interestingly, the E9/M3246 fragment was found to be identical to another AFLP fragment E11/M4208 that was tightly linked to the male sterile gene of S. miltiorrhiza with 95% identity and e-value 4 × 10-93. Blastn analysis suggested that the drought stress gene sequence showed higher identity with nucleotides in Arabidopsis chromosome 1-5.
    International Journal of Molecular Sciences 01/2013; 14(3):6518-28. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salvia miltiorrhiza Bunge is one of the most renowned traditional medicinal plants in China. Phenolic acids that are derived from the rosmarinic acid pathway, such as rosmarinic acid and salvianolic acid B, are important bioactive components in S. miltiorrhiza. Accumulations of these compounds have been reported to be induced by various elicitors, while little is known about transcription factors that function in their biosynthetic pathways. We cloned a subgroup 4 R2R3 MYB transcription factor gene (SmMYB39) from S. miltiorrhiza and characterized its roles through overexpression and RNAi-mediated silencing. As the results showed, the content of 4-coumaric acid, rosmarinic acid, salvianolic acid B, salvianolic acid A and total phenolics was dramatically decreased in SmMYB39-overexpressing S. miltiorrhiza lines while being enhanced by folds in SmMYB39-RNAi lines. Quantitative real-time PCR and enzyme activities analyses showed that SmMYB39 negatively regulated transcripts and enzyme activities of 4-hydroxylase (C4H) and tyrosine aminotransferase (TAT). These data suggest that SmMYB39 is involved in regulation of rosmarinic acid pathway and acts as a repressor through suppressing transcripts of key enzyme genes.
    PLoS ONE 01/2013; 8(9):e73259. · 3.53 Impact Factor
  • Source
    Electronic Journal of Biotechnology 09/2012; 15(5):10-10. · 0.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRNAs) are a class of non-coding RNAs that play critical roles in post-transcriptional regulation. Their target genes are involved in a variety of biological processes such as development, metabolism, and stress response. Panicum miliaceum L. (Panicum) is an important grain crop, but, until now, no miRNAs have been identified in this plant. Using a homology search based on expressed sequence tag (EST) analysis and miRNA precursor secondary structure, a total of 43 new miRNAs were identified. The miRNAs were found to be unevenly distributed among 11 miRNA families. Target analysis using the plant small RNA target analysis server psRNATarget showed that the newly identified miRNAs can potentially regulate 68 target genes. Ten of the 11 miRNA families were annotated as involved in RNA regulation, suggesting they may play an essential role in post-transcriptional regulation in Panicum. Selected miRNAs representing eight of the families were verified by northern blotting, indicating that the prediction method that we used to identify the miRNAs was effective.
    Science China. Life sciences 09/2012; 55(9):807-17. · 2.02 Impact Factor
  • Zongsuo Liang, Qian Li, Wenhui Xu
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to investigate the effects of different light quality on the growth, accumulation of active ingredients and enzymes activities of Salvia miltiorrhiza. The seedlings of S. miltiorrhiza were treated by different light quality, and relative parameters were measured. The data was statistically processed. Plant height was significantly decreased with supplemental blue light (WB), and the root length, root diameter, root fresh weight and root dry weight were significantly increased with supplemental red light (WR). Salvianolic acid B concentration in S. miltiorrhiza was highly increased by supplemental blue and red light, but tanshinone IIA concentration was not significantly affected by supplemental blue and red light. Enzymes activities of SOD, POD, PAL, TAT and PPO in S. miltiorrhiza were significant increased by supplemental blue light, and enzymes activities of POD, TAT and PPO were significant increased by supplemental red light. The root growth of S. miltiorrhiza was greatly promoted by supplemental red light (WR). Salvianolic acid B concentration in S. miltiorrhiza was highly increased by supplemental blue and red light. Enzymes activities of TAT and PPO in S. miltiorrhiza were significant increased by supplemental blue light and red light.
    Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica 07/2012; 37(14):2055-60.
  • [Show abstract] [Hide abstract]
    ABSTRACT: To study the function of ABA and fluridone on the contents of penolic acids and two key synthetases (PAL and TAT). Conducted 4 different concentrations in the hairy root of Salvia miltiorrhiza after culturing 18 days and treated with fluridone. One day later, harvested the hairy root and measured the activity of PAL and TAT; Treatment for 6 days, gathered and determined the contents of phenolic acids. In certain concentration of ABA, lower ABA could induced the production of growth and higher ABA inhibitor the growth in hairy roots of S. miltiorrhiza; ABA induced the accumulation of caffeic acid considerably, and the effect on the contents of coffee acid show positive correlation; As for the RA and LAB, the low dosage of ABA simulated the production and higher ABA inhibited the production of them; the ABA biosynthetic inhibitor fluridone can decreases ABA's the effect; The different of ABA activated the activity of PAL and TAT, but the impact were discriminating, when treatment with ABA and fluridone, the inducing were declined. ABA induced the accumulation of.
    Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica 03/2012; 37(6):754-9.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tanshinones, a group of active ingredients in Salvia miltiorrhiza, are derived from at least two biosynthetic pathways, which are the mevalonate (MVA) pathway in the cytosol and the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway in the plastids. Abscisic acid (ABA) and methyl jasmonate (MJ) are two well-known plant hormones induced by water stress. In this study, effects of polyethylene glycol (PEG), ABA and MJ on tanshinone production in S. miltiorrhiza hairy roots were investigated, and the role of MJ in PEG- and ABA-induced tanshinone production was further elucidated. The results showed that tanshinone production was significantly enhanced by treatments with PEG, ABA and MJ. The mRNA levels of 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGR), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) and 1-deoxy-d-xylulose 5-phosphate synthase (DXS), as well as the enzyme activities of HMGR and DXS were stimulated by all three treatments. PEG and ABA triggered MJ accumulation. Effects of PEG and ABA on tanshinone production were completely abolished by the ABA biosynthesis inhibitor [tungstate (TUN)] and the MJ biosynthesis inhibitor [ibuprofen (IBU)], while effects of MJ were almost unaffected by TUN. In addition, MJ-induced tanshinone production was completely abolished by the MEP pathway inhibitor [fosmidomycin (FOS)], but was just partially arrested by the MVA pathway inhibitor [mevinolin (MEV)]. In conclusion, a signal transduction model was proposed that exogenous applications of PEG and ABA triggered endogenous MJ accumulation by activating ABA signaling pathway to stimulate tanshinone production, while exogenous MJ could directly induce tanshinone production mainly via the MEP pathway in S. miltiorrhiza hairy roots.
    Physiologia Plantarum 02/2012; 146(2):173-83. · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salvia miltiorrhiza has been widely used in the treatment of coronary heart disease. Tanshinones, a group of diterpenoids are the main active ingredients in S. miltiorrhiza. Two biosynthetic pathways were involved in tanshinone biosynthesis in plants: the mevalonate (MVA) pathway in the cytosol and the methylerythritol phosphate (MEP) pathway in the plastids. The 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is the rate-limiting enzyme of the MVA pathway. The 1-deoxy-D-xylulose 5-phosphate synthase (DXS) and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) are the key enzymes of the MEP pathway. In this study, to reveal roles of the MVA and the MEP pathways in cell growth and tanshinone production of S. miltiorrhiza hairy roots, specific inhibitors of the two pathways were used to perturb metabolic flux. The results showed that the MVA pathway inhibitor (mevinolin, MEV) was more powerful to inhibit the hairy root growth than the MEP pathway inhibitor (fosmidomycin, FOS). Both MEV and FOS could significantly inhibit tanshinone production, and FOS was more powerful than MEV. An inhibitor (D, L-glyceraldehyde, DLG) of IPP translocation strengthened the inhibitory effects of MEV and FOS on cell growth and tanshinone production. Application of MEV resulted in a significant increase of expression and activity of HMGR at 6 h, and a sharp decrease at 24 h. FOS treatment resulted in a significant increase of DXR and DXS expression and DXS activity at 6 h, and a sharp decrease at 24 h. Our results suggested that the MVA pathway played a major role in cell growth, while the MEP pathway was the main source of tanshinone biosynthesis. Both cell growth and tanshinone production could partially depend on the crosstalk between the two pathways. The inhibitor-mediated changes of tanshinone production were reflected in transcript and protein levels of genes of the MVA and MEP pathways.
    PLoS ONE 01/2012; 7(11):e46797. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plants of the genus Salvia produce various types of phenolic compounds and tanshinones which are effective for treatment of coronary heart disease. Salvia miltiorrhiza and S. castanea Diels f. tomentosa Stib are two important members of the genus. In this study, metabolic profiles and cDNA-AFLP analysis of four samples were employed to identify novel genes potentially involved in phenolic compounds and tanshinones biosynthesis, including the red roots from the two species and two tanshinone-free roots from S. miltiorrhiza. The results showed that the red roots of S. castanea Diels f. tomentosa Stib produced high contents of rosmarinic acid (21.77 mg/g) and tanshinone IIA (12.60 mg/g), but low content of salvianolic acid B (1.45 mg/g). The red roots of S. miltiorrhiza produced high content of salvianolic acid B (18.69 mg/g), while tanshinones accumulation in this sample was much less than that in S. castanea Diels f. tomentosa Stib. Tanshinones were not detected in the two tanshinone-free samples, which produced high contents of phenolic compounds. A cDNA-AFLP analysis with 128 primer pairs revealed that 2300 transcript derived fragments (TDFs) were differentially expressed among the four samples. About 323 TDFs were sequenced, of which 78 TDFs were annotated with known functions through BLASTX searching the Genbank database and 14 annotated TDFs were assigned into secondary metabolic pathways through searching the KEGGPATHWAY database. The quantitative real-time PCR analysis indicated that the expression of 9 TDFs was positively correlated with accumulation of phenolic compounds and tanshinones. These TDFs additionally showed coordinated transcriptional response with 6 previously-identified genes involved in biosynthesis of tanshinones and phenolic compounds in S. miltiorrhiza hairy roots treated with yeast extract. The sequence data in the present work not only provided us candidate genes involved in phenolic compounds and tanshinones biosynthesis but also gave us further insight into secondary metabolism in Salvia.
    PLoS ONE 01/2012; 7(1):e29678. · 3.53 Impact Factor

Publication Stats

80 Citations
63.48 Total Impact Points

Institutions

  • 2014
    • Northwest University
      Northwest Harborcreek, Pennsylvania, United States
  • 2011–2014
    • Northwest A & F University
      • College of Life Sciences
      Yang-ling-chen, Shaanxi, China
  • 2013
    • Chinese Academy of Sciences
      Peping, Beijing, China
  • 2012–2013
    • Zhejiang Sci-Tech University
      Hang-hsien, Zhejiang Sheng, China
  • 2009
    • Northwest University
      • College of Life Sciences
      Xi’an, Shaanxi Sheng, China