Are you Sen Wang?

Claim your profile

Publications (2)4.93 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: This study aims to evaluate (64)Cu-DOTA-rituximab (PETRIT) in a preclinical transgenic mouse model expressing human CD20 for potential clinical translation. (64)Cu was chelated to DOTA-rituximab. Multiple radiolabeling, quality assurance, and imaging experiments were performed. The human CD20 antigen was expressed in B cells of transgenic mice (CD20TM). The mice groups studied were: (a) control (nude mice, n = 3) that received 7.4 MBq/dose, (b) with pre-dose (CD20TM, n = 6) received 2 mg/kg pre-dose of cold rituximab prior to PETRIT of 7.4 MBq/dose, and (c) without pre-dose (CD20TM, n = 6) PETRIT alone received 7.4 MBq/dose. Small animal PET was used to image mice at various time points (0, 1, 2, 4, 24, 48, and 72 h). The OLINDA/EXM software was used to determine the human equivalent dose for individual organs. PETRIT was obtained with a specific activity of 545 ± 38.91 MBq/nmole, radiochemical purity >95%, and immunoreactivity >75%. At 24 h, spleenic uptake of PETRIT%ID/g (mean ± STD) with and without pre-dose was 1.76 ± 0.43% and 16.5 ± 0.45%, respectively (P value = 0.01). Liver uptake with and without pre-dose was 0.41 ± 0.51% and 0.52 ± 0.17% (P value = 0.86), respectively. The human equivalents of highest dose organs with and without pre-dose are osteogenic cells at 30.8 ± 0.4 μSv/MBq and the spleen at 99 ± 4 μSv/MBq, respectively. PET imaging with PETRIT in huCD20 transgenic mice provided human dosimetry data for eventual applications in non-Hodgkins lymphoma patients.
    Molecular imaging and biology: MIB: the official publication of the Academy of Molecular Imaging 01/2012; 14(5):608-16. · 2.47 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: INTRODUCTION: The development of molecular probes based on novel engineered protein constructs is under active investigation due to the great potential of this generalizable strategy for imaging a variety of tumor targets. DISCUSSION: In this report, human epidermal growth factor receptor type 2 (HER2)-binding Affibody molecules were radiolabeled with (64)Cu and their imaging ability was further evaluated in tumor mice models to understand the promise and limitations of such probes. The anti-HER2 Affibody molecules in monomeric (Z(HER2:477)) and dimeric [(Z(HER2:477))(2)] forms were site specifically modified with the maleimide-functionalized chelator, 1,4,7,10-tetraazacyclododecane-1,4,7-tris(acetic acid)-10-acetate mono (N-ethylmaleimide amide) (Mal-DOTA). The resulting DOTA-Affibody conjugates were radiolabeled with (64)Cu and evaluated in nude mice bearing subcutaneous SKOV3 tumors. Biodistribution experiments showed that tumor uptake values of (64)Cu-DOTA-Z(HER2:477) and (64)Cu-DOTA-(Z(HER2:477))(2) were 6.12 +/- 1.44% and 1.46 +/- 0.50% ID/g, respectively, in nude mice (n = 3 each) at 4 h postinjection. Moreover, (64)Cu-labeled monomer exhibited significantly higher tumor/blood ratio than that of radiolabeled dimeric counterpart at all time points examined in this study. MicroPET imaging of (64)Cu-DOTA-Z(HER2:477) in SKOV3 tumor mice clearly showed good and specific tumor localization. This study demonstrates that (64)Cu-labeled Z(HER2:477) is a promising targeted molecular probe for imaging HER2 receptor expression in living mice. Further work is needed to improve the excretion properties, hence dosimetry and imaging efficacy, of the radiometal-based probe.
    Molecular imaging and biology: MIB: the official publication of the Academy of Molecular Imaging 09/2009; 12(3):316-24. · 2.47 Impact Factor