James F. Barker

Universidade Federal de São Paulo, Guarulhos, Estado de Sao Paulo, Brazil

Are you James F. Barker?

Claim your profile

Publications (42)78.13 Total impact

  • Juliana G Freitas, James F Barker
    [show abstract] [hide abstract]
    ABSTRACT: When denatured ethanol (E95) is spilled in a site with previous gasoline contamination, it modifies the source distribution (Part 1). But it can also impact the transport and fate of hydrocarbons in the groundwater. Ethanol could cause an increase in dissolved concentrations and more persistent plumes due to cosolvency and decreased hydrocarbon biodegradation rates. To investigate these possibilities, two controlled releases were performed: first of E10 (gasoline with 10% ethanol) and one year later of E95 on top of the gasoline. Groundwater concentrations were monitored above and below the water table in multilevel wells. Soil cores and vapor samples were also collected over a period of approximately 400days. Surprisingly, ethanol transport was very limited; at wells located 2.3m downgradient from the mid-point of the release trench, the maximum concentration measured was around 2400mg/L. After 392days, only 3% of the ethanol released migrated past 2.3m, and no ethanol remained in the source. The processes that caused ethanol loss were likely volatilization, aerobic biodegradation in the unsaturated zone, and anaerobic biodegradation. Evidence that biodegradation was significant in the source zone includes increased CO(2) concentrations in the vapor and the presence of biodegradation products (acetate concentrations up to 2300mg/L). The position of the dissolved hydrocarbon plumes was slightly shifted, but the concentrations and mass flux remained within the same range as before the spill, indicating that cosolvency was not significant. Hydrocarbons in the groundwater were significantly biodegraded, with more than 63% of the mass being removed in 7.5m, even when ethanol was present in the groundwater. The impacts of ethanol on the hydrocarbon transport and fate were minimal, largely due to the separation of ethanol and hydrocarbons in the source (Part 1).
    Journal of contaminant hydrology 01/2013; · 2.01 Impact Factor
  • Juliana G Freitas, James F Barker
    [show abstract] [hide abstract]
    ABSTRACT: With the increasing use of ethanol in fuels, it is important to evaluate its fate when released into the environment. While ethanol is less toxic than other organic compounds present in fuels, one of the concerns is the impact ethanol might have on the fate of gasoline hydrocarbons in groundwater. One possible concern is the spill of denatured ethanol (E95: ethanol containing 5% denaturants, usually hydrocarbons) in sites with pre-existing gasoline contamination. In that scenario, ethanol is expected to increase the mobility of the NAPL phase by acting as a cosolvent and decreasing interfacial tension. To evaluate the E95 behaviour and its impacts on pre-existing gasoline, a field test was performed at the CFB-Borden aquifer. Initially gasoline contamination was created releasing 200L of E10 (gasoline with 10% ethanol) into the unsaturated zone. One year later, 184L of E95 was released on top of the gasoline contamination. The site was monitored using soil cores, multilevel wells and one glass access tube. At the end of the test, the source zone was excavated and the compounds remaining were quantified. E95 ethanol accumulated and remained within the capillary fringe and unsaturated zone for more than 200days, despite ~1m oscillations in the water table. The gasoline mobility increased and it was redistributed in the source zone. Gasoline NAPL saturations in the soil increased two fold in the source zone. However, water table oscillations caused a separation between the NAPL and ethanol: NAPL was smeared and remained in deeper positions while ethanol moved upwards following the water table rise. Similarly, the E95 denaturants that initially were within the ethanol-rich phase became separated from ethanol after the water table oscillation, remaining below the ethanol rich zone. The separation between ethanol and hydrocarbons in the source after water table oscillation indicates that ethanol's impact on hydrocarbon residuals is likely limited to early times.
    Journal of contaminant hydrology 01/2013; · 2.01 Impact Factor
  • Juliana G Freitas, James F Barker
    [show abstract] [hide abstract]
    ABSTRACT: Oxygenates present in gasoline, such as ethanol and MTBE, are a concern in subsurface contamination related to accidental spills. While gasoline hydrocarbon compounds have low solubility, MTBE and ethanol are more soluble, ethanol being completely miscible with water. Consequently, their fate in the subsurface is likely to differ from that of gasoline. To evaluate the fate of gasoline containing oxygenates following a release in the unsaturated zone shielded from rainfall/recharge, a controlled field test was performed at Canadian Forces Base Borden, in Ontario. 200L of a mixture composed of gasoline with 10% ethanol and 4.5% MTBE was released in the unsaturated zone, into a trench 20cm deep, about 32cm above the water table. Based on soil cores, most of the ethanol was retained in the source, above the capillary fringe, and remained there for more than 100 days. Ethanol partitioned from the gasoline to the unsaturated pore-water and was retained, despite the thin unsaturated zone at the site (~35cm from the top of the capillary fringe to ground surface). Due to its lower solubility, most of the MTBE remained within the NAPL as it infiltrated deeper into the unsaturated zone and accumulated with the gasoline on top of the depressed capillary fringe. Only minor changes in the distribution of ethanol were noted following oscillations in the water table. Two methods to estimate the capacity of the unsaturated zone to retain ethanol are explored. It is clear that conceptual models for sites impacted by ethanol-fuels must consider the unsaturated zone.
    Journal of contaminant hydrology 11/2011; 126(3-4):153-66. · 2.01 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: In the event of a gasoline spill containing oxygenated compounds such as ethanol and MTBE, it is important to consider the impacts these compounds might have on subsurface contamination. One of the main concerns commonly associated with ethanol is that it might decrease the biodegradation of aromatic hydrocarbon compounds, leading to an increase in the hydrocarbon dissolved plume lengths. The first part of this study (Part 1) showed that when gasoline containing ethanol infiltrates the unsaturated zone, ethanol is likely to partition to and be retained in the unsaturated zone pore water. In this study (Part 2), a controlled field test is combined with a two-dimensional laboratory test and three-dimensional numerical modelling to investigate how ethanol retention in the unsaturated zone affects the downgradient behaviour of ethanol and aromatic hydrocarbon compounds. Ethanol transport downgradient was extremely limited. The appearance of ethanol in downgradient wells was delayed and the concentrations were lower than would be expected based on equilibrium dissolution. Oscillations in the water table resulted in minor flushing of ethanol, but its effect could still be perceived as an increase in the groundwater concentrations downgradient from the source zone. Ethanol partitioning to the unsaturated zone pore water reduced its mass fraction within the NAPL thus reducing its anticipated impact on the fate of the hydrocarbon compounds. A conceptual numerical simulation indicated that the potential ethanol-induced increase in benzene plume length after 20 years could decrease from 136% to 40% when ethanol retention in the unsaturated zone is considered.
    Journal of contaminant hydrology 05/2011; 125(1-4):70-85. · 2.01 Impact Factor
  • Juliana G. Freitas, James F. Barker
    [show abstract] [hide abstract]
    ABSTRACT: Fuel mixtures composed of gasoline and ethanol are lighter than water and, if enough volume is released into the unsaturated zone, they accumulate in the capillary fringe, acting as a source for dissolved plumes. To evaluate different sampling techniques and transport in the capillary fringe, two controlled releases of gasoline and ethanol mixtures were conducted in the unsaturated zone at the CFB Borden aquifer. Lateral flow and transport in the capillary fringe is well documented, but this is the first field documentation of transport of organic compounds in the capillary fringe following fuel spills. Transport of both ethanol and hydrocarbon compounds in the capillary fringe was significant, ethanol being transported exclusively above the water table. Significant concentrations of benzene were found above the water table up to 6 m downgradient from the source. The groundwater sampling techniques evaluated were fully screened monitoring wells; multilevel wells constructed with ceramic porous cups located in both the capillary fringe and below the water table; and soil coring. The fully screened monitoring well was unable to draw water from the capillary fringe and so failed to adequately describe the contaminant distribution. Pore water concentrations obtained by sampling the multilevel porous cups and calculated based on analysis of soil core yielded similar results.
    Ground Water Monitoring and Remediation 04/2011; 31(3):95 - 102. · 1.05 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Ethanol use as a gasoline additive is increasing, as are the chances of groundwater contamination caused by gasoline releases involving ethanol. To evaluate the impact of ethanol on dissolved hydrocarbon plumes, a field test was performed in which three gasoline residual sources with different ethanol fractions (E0: no ethanol, E10: 10% ethanol and E95: 95% ethanol) were emplaced below the water table. Using the numerical model BIONAPL/3D, the mass discharge rates of benzene, toluene, ethylbenzene, xylenes, trimethylbenzenes and naphthalene were simulated and results compared to those obtained from sampling transects of multilevel samplers. It was shown that ethanol dissolved rapidly and migrated downgradient as a short slug. Mass discharge of the hydrocarbons from the E0 and E10 sources suggested similar first-order hydrocarbon decay rates, indicating that ethanol from E10 had no impact on hydrocarbon degradation. In contrast, the estimated hydrocarbon decay rates were significantly lower when the source was E95. For the E0 and E10 cases, the aquifer did not have enough oxygen to support complete mineralization of the hydrocarbon compounds to the extent suggested by the field-based mass discharge. Introducing a heterogeneous distribution of hydraulic conductivity did little to overcome this discrepancy. A better match between the numerical model and the field data was obtained assuming partial degradation of the hydrocarbons to intermediate compounds. Besides depending on the ethanol concentration, the impact of ethanol on hydrocarbon degradation appears to be highly dependent on the availability of electron acceptors.
    Journal of contaminant hydrology 01/2011; 119(1-4):25-43. · 2.01 Impact Factor
  • Steven P Forsey, Neil R Thomson, James F Barker
    [show abstract] [hide abstract]
    ABSTRACT: The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalene<phenanthrene<pyrene. The rate of side chain reactivity is controlled by the C-H bond strength. For the alkyl substituted benzenes an excellent correlation was observed between the reaction rate coefficients and bond dissociation energies, but for the substituted PAHs the relationship was poor. A trend was found between the reaction rate coefficients and the calculated heats of complexation indicating that significant ring oxidation occurred in addition to side chain oxidation. Clar's aromatic sextet theory was used to predict the relative stability of arenes towards ring oxidation by permanganate.
    Chemosphere 03/2010; 79(6):628-36. · 3.14 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Biodegradation of organic compounds in groundwater can be a significant source of methane in contaminated sites. Methane might accumulate in indoor spaces posing a hazard. The increasing use of ethanol as a gasoline additive is a concern with respect to methane production since it is easily biodegraded and has a high oxygen demand, favoring the development of anaerobic conditions. This study evaluated the use of stable carbon isotopes to distinguish the methane origin between gasoline and ethanol biodegradation, and assessed the occurrence of methane in ethanol fuel contaminated sites. Two microcosm tests were performed under anaerobic conditions: one test using ethanol and the other using toluene as the sole carbon source. The isotopic tool was then applied to seven field sites known to be impacted by ethanol fuels. In the microcosm tests, it was verified that methane from ethanol (δ¹³C = -11.1‰) is more enriched in ¹³C, with δ¹³C values ranging from -20‰ to -30‰, while the methane from toluene (δ¹³C = -28.5‰) had a carbon isotopic signature of -55‰. The field samples had δ¹³C values varying over a wide range (-10‰ to -80‰), and the δ¹³C values allowed the methane source to be clearly identified in five of the seven ethanol/gasoline sites. In the other two sites, methane appears to have been produced from both sources. Both gasoline and ethanol were sources of methane in potentially hazardous concentrations and methane could be produced from organic acids originating from ethanol along the groundwater flow system even after all the ethanol has been completed biodegraded.
    Ground Water 01/2010; 48(6):844-57. · 2.13 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A pilot scale field trial was conducted to evaluate the recovery of volatile, light non-aqueous phase liquids (LNAPLs) using a novel remediation method termed supersaturated water injection (SWI). SWI uses a patented technology to efficiently dissolve high concentrations of CO(2) into water at elevated pressures. This water is injected into the subsurface resulting in the nucleation of CO(2) bubbles at and away from the injection point. The nucleating bubbles coalesce, rise and volatilize residual LNAPL ganglia. In this study, an LNAPL composed of 103 kg of volatile pentane and hexane, and 30 kg of non-volatile Soltrol was emplaced below the water table at residual saturation. The SWI technology removed 78% of the pentane and 50% of the less volatile hexane. Contaminant mass was still being removed when the system was shut down for practical reasons. The mass removed is comparable to that expected for air sparging but a much smaller volume of gas was injected using the SWI system.
    Journal of contaminant hydrology 09/2009; 109(1-4):82-90. · 2.01 Impact Factor
  • K. Sra, N. Thomson, J. Barker
    [show abstract] [hide abstract]
    ABSTRACT: In situ chemical oxidation (ISCO) using persulfate is a promising remediation technology that can be potentially applied to a wide range of organic contaminants. Gasoline compounds are of particular interest because they extensively impact the soil and groundwater, and are highly persistent and toxic. In this investigation, destruction of specific gasoline compounds (benzene, toluene, ethylbenzenes, xylenes, trimethylbenzenes (TMBs) and naphthalene), and fractions (F1 and F2) by activated and inactivated persulfate was studied at the bench-scale. Aqueous phase batch reactors (25 mL) for inactivated systems employed persulfate at two concentrations (1 or 20 g/L), and activated systems were conducted with a persulfate concentration of 20 g/L. In the activated systems, the ability of hydrogen peroxide or chelated-ferrous as an activator was examined at two experimental conditions (peroxide molar ratio 0.1 and 1.0 with respect to persulfate; and citric acid chelated ferrous at 150 and 600 mg/L). All treatments and controls contained an initial gasoline concentration of approximately 25 mg/L and were run in triplicate. Sampling for gasoline compounds was conducted over 94%) and naphthalene (>71%). Oxidation of the F1 fraction (>94%) was more pronounced than the F2 fraction (>80%), and >93% TPH was oxidized. Use of peroxide as an activator at a molar ratio of 0.1 improved the destruction of TMBs (>99%) and naphthalene (>85%) while maintaining the high removal of BTEX (>99%) compounds. Increase in activator strength (molar ratio 1.0) decreased the destruction of xylenes (>86%) and TMBs (>81%). The decrease in concentration of all the compounds was higher for a molar ratio of 1.0 (
    AGU Spring Meeting Abstracts. 05/2009;
  • [show abstract] [hide abstract]
    ABSTRACT: In the shallow, rather homogeneous, unconfined Borden sand aquifer, field trials of air sparging (Tomlinson et al., 2003) and pulsed air sparging (Lambert et al., 2009) have been conducted, the latter to remediate a residual gasoline source emplaced below the water table. As well, a supersaturated (with CO2) water injection (SWI) technology, using the inVentures inFusion system, has been trialed in two phases: 1. in the uncontaminated sand aquifer to evaluate the radius of influence, extent of lateral gas movement and gas saturation below the water table, and 2. in a sheet pile cell in the Borden aquifer to evaluate the recovery of volatile hydrocarbon components (pentane and hexane) of an LNAPL emplaced below the water table (Nelson et al., 2008). The SWI injects water supersaturated with CO2. The supersaturated injected water moves laterally away from the sparge point, releasing CO2 over a wider area than does gas sparging from a single well screen. This presentation compares these two techniques in terms of their potential for remediating volatile NAPL components occurring below the water table in a rather homogeneous sand aquifer. Air sparging created a significantly greater air saturation in the vicinity of the sparge well than did the CO2 system (60 percent versus 16 percent) in the uncontaminated Borden aquifer. However, SWI pushed water, still supersaturated with CO2, up to about 2.5 m from the injection well. This would seem to provide a considerable advantage over air sparging from a point, in that gas bubbles are generated at a much larger radius from the point of injection with SWI and so should involve additional gas pathways through a residual NAPL. Overall, air sparging created a greater area of influence, defined by measurable air saturation in the aquifer, but air sparging also injected about 12 times more gas than was injected in the SWI trials. The pulsed air sparging at Borden (Lambert et al.) removed about 20 percent (4.6 kg) of gasoline hydrocarbons, mainly pentane and hexane, from the residual gasoline via sparging. A similar mass was estimated to have been removed by aerobic biodegradation. The extent of volatile recovery needs to be better defined and so post-sparging coring and analysis of residual LNAPL is underway. Impressively, the second SWI trial recovered more than 60 percent of the pentane-hexane from the NAPL. In both field experiments there was potential for minor additional recovery if the system had been operated longer. Comparison of efficiency of the pulsed air sparging and SWI systems is difficult in that the initial LNAPL residuals have different chemistry, but similar distribution, different volumes of gas were used, and biodegradation accounted for a significant removal of hydrocarbons only in the air sparging system. The SWI trial recovered an impressive portion of the volatile LNAPL, while using considerably less gas than the air sparging system, but the SWI delivery system was both more complex and more expensive than the air sparging system. Additional trials are underway in more complex aquifers to further assess the performance of the SWI technology, including costs and practical limitations.
    AGU Spring Meeting Abstracts. 04/2009; -1:06.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Biosparging enhances both aerobic biodegradation and volatilization and is commonly applied to residual hydrocarbon source zone remediation. This technology was applied in pulsed mode to a known source of gasoline contamination in order to quantify the extent of remediation achieved in terms of both mass removed and reduction in mass discharge into groundwater. The gasoline source was created at the groundwater research facility at CFB Borden, Canada. About 40 L of gasoline with 10% ethanol was injected in small volumes from 24 injection points below the water table in 2004. The downgradient plume is still being monitored and the source area was cored in 2007. In 2008, a single-point biosparge system was installed and operated. Water-saturated soils precluded the use of a traditional soil vapor extraction (SVE) system, so an airtight cover was used with soil venting to capture and monitor off-gases. Conservative tracers (He, SF6) and hydrocarbon gas monitoring were intended to assign mass removal to volatilization. CO2 and O2 monitoring in the off-gas confirmed limited biodegradation of hydrocarbons. Post-remediation core analysis and downgradient monitoring of groundwater will be used to define the extent of remediation and decline of mass discharge to the groundwater plume.
    01/2009; 14.
  • Yu Dao Chen, Lai Gui, James F. Barker, Yaping Jiang
    [show abstract] [hide abstract]
    ABSTRACT: Trimethylbenzene (TMB), as a constituent of gasoline, is often expected to be used as a conservative tracer in anaerobic BTEX-contaminated groundwater site to correct for attenuation due to dispersion, dilution and sorption along a flow path. To evaluate the suitability of using TMB as a tracer and to better understand biodegradability of TMB in contaminated groundwater by gasoline under anaerobic conditions, laboratory microcosms were conducted with mixed nitrate/iron/sulfate electron-acceptor amendments, using aquifer materials collected from Canadian Forces Base (CFB), Borden, Ontario, Canada. The results showed that under denitrifying conditions, biodegradation of 1,3,5-TMB, 1,2,4-TMB and 1,2,3-TMB were relatively slow and after 204days of incubation approximately 27, 24, and 16% of the initial concentrations, respectively, were degraded in the microcosms. Under sulfate-reducing conditions, TMB isomers were recalcitrant. In contrast, significant biodegradation of TMB was observed under iron-reducing conditions. 1,3,5-TMB, 1,2,4-TMB and 1,2,3-TMB were degraded to 44, 47, and 24% of initial concentrations with first-order biodegradation rate constants of 0.003, 0.006 and 0.013d−1, respectively. This study indicates that TMB biodegradation is insignificant under nitrate and sulfate-reducing conditions but significant under iron-reducing conditions. Therefore, the use of TMB as a tracer for interpreting removal of other biodegradable gasoline constituents such as BTEX requires caution, especially in the presence of iron-reducing conditions.
    Environmental Geology 12/2008; 56(6):1123-1128. · 1.13 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Blending of ethanol into gasoline as a fuel oxygenate has created the scenario where inadvertent releases of E95 into soil previously contaminated by gasoline may remobilize these pre-existing NAPLs and lead to higher dissolved hydrocarbon (BTEX) concentrations in groundwater. We contribute to the development of a risk-based corrective action framework addressing this issue by conducting two laboratory experiments involving the release of ethanol into a gasoline source zone established in the capillary fringe. We then develop and apply the numerical model CompFlow Bio to replicate three specific experimental observations: (1) depression of the capillary fringe by the addition of the gasoline fuel mixture due to a reduction in the surface tension between the gas and liquid phases, (2) further depression of the capillary fringe by the addition of ethanol, and (3) remobilization of the gasoline fuel mixture LNAPL source zone due to the cosolvent behaviour of ethanol in the presence of an aqueous phase, as well as a reduction in the interfacial tension between the aqueous/non-aqueous phases due to ethanol. While the simulated collapse of the capillary fringe was not as extensive as that which was observed, the simulated and observed remobilized non-aqueous phase distributions were in agreement following ethanol injection. Specifically, injection of ethanol caused the non-aqueous phase to advect downwards toward the water table as the capillary fringe continued to collapse, finally collecting on top of the water table in a significantly reduced area exhibiting higher saturations than observed prior to ethanol injection. Surprisingly, the simulated ethanol and gasoline aqueous phase plumes were uniform despite the redistribution of the source zone. Dissolution of gasoline into the aqueous phase was dramatically increased due to the cosolvency effect of ethanol on the non-aqueous phase source zone. We advocate further experimental studies focusing on eliminating data gaps identified here, as well as field-scale experiments to address issues associated with ethanol-BTEX biodegradation and sorption within the development of a risk-based corrective action framework.
    Journal of contaminant hydrology 12/2008; 105(1-2):1-17. · 2.01 Impact Factor
  • Juliana G. Freitas, James F. Barker
    [show abstract] [hide abstract]
    ABSTRACT: Porous suction samplers have been widely used to obtain ground water samples from the vadose zone. However, previous studies identified different mechanisms that may compromise the sample’s representativeness, such as volatilization and sorption. This issue is particularly important when dealing with volatile organic compounds (VOCs) as in gasoline spills. Ethanol is common in modern fuels and so may be present in ground water contamination from fuel releases. The objective of this work was to evaluate the losses of VOCs in the presence of ethanol when using porous suction samplers. Laboratory experiments were performed using a ceramic porous suction sampler to sample test solution containing benzene, toluene, xylenes, trimethylbenzenes, naphthalene, and different volumetric fractions of ethanol. Significant losses were found up to 30% for ethylbenzene. Ethanol was found to affect the accuracy of the readings by two main mechanisms: first, negatively, by increasing the headspace in the sampling tube, and second, positively, increasing partition to the aqueous phase due to the cosolvent effect and therefore decreasing the mass loss by volatilization. As a consequence, the highest losses of VOCs were found at intermediate ethanol volume fractions: 10% and 20% (v/v). The losses can be anticipated by measuring the ratio of gas to water in the sampling line and then by applying simple partition models considering cosolvency by ethanol. The importance of adequate purging when using porous suction samplers was also shown.
    Ground Water Monitoring and Remediation 08/2008; 28(3):83 - 92. · 1.05 Impact Factor
  • J. Molson, M. Mocanu, J. Barker
    [show abstract] [hide abstract]
    ABSTRACT: Dissolution of oxygenated gasoline, as well as buoyancy-driven groundwater flow and transport of the multicomponent dissolved phase plumes, is simulated numerically in three dimensions. The simulations are based on a field experiment described by Mocanu (2007) in which three oxygenated gasoline sources were emplaced as nonaqueous phase liquids (NAPLs) below the water table of the shallow sand aquifer at Canadian Forces Base Borden, Ontario. The sources were composed of an ethanol-free gasoline mixture spiked with 9.8% methyl tert-butyl ether and 0.2% tert-butyl alcohol (GMT-E0), a gasoline with 10% ethanol (E10), and a source with 95% ethanol (E95). The numerical model includes dissolution of gasoline as a NAPL, density-dependent groundwater flow, advective-dispersive transport of the dissolved components, and ethanol cosolvency and degradation. Buoyancy effects in the dissolved plumes were compared under a homogeneous hydraulic conductivity field as well as with five realizations of spatially correlated random fields representing the Borden aquifer. The simulations showed that buoyancy was most significant in the E95 source plumes within the homogeneous system, having induced after 150 days a net upward displacement of the local peak concentrations for all but the least soluble component of approximately 1.5 m. The peak rise in ethanol from the GMT-E0 and E10 plumes was about 0.6 m. The results highlight the importance of shallow monitoring wells when monitoring high oxygenate fraction gasoline spills in groundwater and have implications for assessing mass fluxes and biodegradation rates.
    Water Resources Research 07/2008; 44(7):7418-. · 3.15 Impact Factor
  • Yu Dao Chen, James F Barker, Lai Gui
    [show abstract] [hide abstract]
    ABSTRACT: Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600 approximately 800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron-reducing conditions. This study suggests that addition of excess ferric iron combined with limited nitrate has promise for in situ bioremediation of BTEX and TMB in the Borden aquifer and possibly for other sites contaminated by hydrocarbons. This study is the first to report 1,2,3-TMB biodegradation under strictly anaerobic condition. With the addition of 500 mg/L ethanol but without EA addition, ethanol and its main intermediate, acetate, were quickly biodegraded within 41 d with methane as a major product. Ethanol initially present at 5000 mg/L without EA addition declined slowly with the persistence of unidentified volatile fatty acids, likely propionate and butyrate, but less methane. In contrast, all ethanol disappeared with repeated additions of either nitrate or ferric iron, but acetate and unidentified intermediates persisted under iron-enhanced conditions. With the addition of 500 mg/L ethanol and nitrate, only minor toluene biodegradation was observed under denitrifying conditions and only after ethanol and acetate were utilized. The higher ethanol concentration (5000 mg/L) essentially shut down BTEX biodegradation likely due to high EA demand provided by ethanol and its intermediates. The negative findings for anaerobic BTEX biodegradation in the presence of ethanol and/or its biodegradation products are in contrast to recent research reported by Da Silva et al. [Da Silva, M.L.B., Ruiz-Aguilar, G.M.L., Alvarez, P.J.J., 2005. Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegradation. 16, 105-114]. Our results suggest that the apparent conservation of high residual labile carbon as biodegradation products such as acetate makes natural attenuation of aromatics less effective, and makes subsequent addition of EAs to promote in situ BTEX biodegradation problematic.
    Journal of Contaminant Hydrology 03/2008; 96(1-4):17-31. · 2.89 Impact Factor
  • J F Devlin, D Katic, J F Barker
    [show abstract] [hide abstract]
    ABSTRACT: A mixture of chlorinated solvents (about 0.5-10 mg/l), including tetrachloroethene (PCE) and carbon tetrachloride (CT), together with a petroleum hydrocarbon, toluene (TOL), were introduced into a 24 m long x 2 m wide x 3 m deep isolated section (henceforth called a gate) of the Borden aquifer and subjected to sequential in situ treatment. An identical section of aquifer was similarly contaminated and allowed to self-remediate by natural attenuation, thus serving as a control. The control presents a rare opportunity to critically assess the performance of the treatment systems, and represents the first such study for sequenced in situ remediation. The first treatment step was anaerobic bioremediation. This was accomplished using a modified nutrient injection wall (NIW) to pulse benzoate and a nutrient solution into the aquifer, maximizing mixing by dispersion and minimizing fouling near the injection wells. In the anaerobic bioactive zone that developed, PCE, CT and chloroform (CF), a degradation product of CT, degraded with a half-lives of about 59, 5.9 and 1.7 days, respectively. The second step was aerobic bioremediation, using a biosparge system. TOL and cis-1,2 dichloroethene (cDCE), from PCE degradation, were found to degrade aerobically with half-lives of 17 and 15 days, respectively. Compared to natural attenuation, PCE and TOL removal rates were significantly better in the sequenced treatment gate. However, CT and CF were similarly and completely attenuated in both gates. It is believed that the presence of TOL helped sustain the reducing environment needed for the reduction of these two compounds.
    Journal of Contaminant Hydrology 05/2004; 69(3-4):233-61. · 2.89 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Mainly due to intrinsic biodegradation, monitored natural attenuation can be an effective and inexpensive remediation strategy at petroleum release sites. However, gasoline additives such as methyl tert-butyl ether (MTBE) can jeopardize this strategy because these compounds often degrade, if at all, at a slower rate than the collectively benzene, toluene, ethylbenzene and the xylene (BTEX) compounds. Investigation of whether a compound degrades under certain conditions, and at what rate, is therefore important to the assessment of the intrinsic remediation potential of aquifers. A natural gradient experiment with dissolved MTBE-containing gasoline in the shallow, aerobic sand aquifer at Canadian Forces Base (CFB) Borden (Ontario, Canada) from 1988 to 1996 suggested that biodegradation was the main cause of attenuation for MTBE within the aquifer. This laboratory study demonstrates biologically catalyzed MTBE degradation in Borden aquifer-like environments, and so supports the idea that attenuation due to biodegradation may have occurred in the natural gradient experiment. In an experiment with batch microcosms of aquifer material, three of the microcosms ultimately degraded MTBE to below detection, although this required more than 189 days (or >300 days in one case). Failure to detect the daughter product tert-butyl alcohol (TBA) in the field and the batch experiments could be because TBA was more readily degradable than MTBE under Borden conditions.
    Journal of Contaminant Hydrology 02/2003; 60(3-4):229-49. · 2.89 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Coalbead methane is part of the non-conventional gas reservoirs and makes a significant contribution to gas production in some parts of the world. Initially, it was assumed that coalbed methane was of thermogenic origin, but most recent studies based on isotope and chemical data and taking into account the hydrogeology of the basin have demonstrated that secondary biogenic gases are formed in many coal-bearing basins. This study, using a similar approach, evaluated the origin of the gas in the Elk Valley coalfield located in British Columbia, Canada. Isotope data in methane samples collected from testhole wells and piezometers show a range that varies from −51.8‰ to −65.4‰ and −303‰ to −415‰ for δ13C and δ2H, respectively. The δ2H data, which are among the most depleted data reported for coalbed methane, have to be related to the very depleted δ2H values of the groundwater (−148‰ to −163‰). Isotope and chemical data collected from DIC show a trend of increasing δ13C values (−11.9‰ to +34.9‰) associated with an increase in DIC concentration (216 to 1650 mg/l). The most 13C depleted DIC and low DIC waters are found in the shallow groundwater flow system representing conditions close to recharge areas, while the most 13C enriched DIC and high concentration DIC waters are found in the discharge areas associated with a deep groundwater flow system. The DIC pattern, which is typical for methanogenic aquifers, and the isotope data obtained in methane samples clearly indicate that the gas found in the Elk Valley coalfield is mainly biogenic in origin. This study reaffirms that an approach that combines an evaluation of the groundwater flow system, the isotopic characterization and concentration pattern of the main carbon pools (CH4 and DIC), and the isotopic characterization of the groundwater is needed to fully evaluate the origin of gases in coal basins.
    Chemical Geology - CHEM GEOL. 01/2003; 195(1):219-227.

Publication Stats

365 Citations
78.13 Total Impact Points

Institutions

  • 2013
    • Universidade Federal de São Paulo
      • Departamento de Ciências Biológicas
      Guarulhos, Estado de Sao Paulo, Brazil
  • 1998–2013
    • University of Waterloo
      • Department of Earth and Environmental Sciences
      Waterloo, Ontario, Canada