Are you Sergey Kupriyanov?

Claim your profile

Publications (2)38.6 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The production of induced pluripotent stem cells (iPSCs) from somatic cells provides a means to create valuable tools for basic research and may also produce a source of patient-matched cells for regenerative therapies. iPSCs may be generated using multiple protocols and derived from multiple cell sources. Once generated, iPSCs are tested using a variety of assays including immunostaining for pluripotency markers, generation of three germ layers in embryoid bodies and teratomas, comparisons of gene expression with embryonic stem cells (ESCs) and production of chimeric mice with or without germline contribution(2). Importantly, iPSC lines that pass these tests still vary in their capacity to produce different differentiated cell types(2). This has made it difficult to establish which iPSC derivation protocols, donor cell sources or selection methods are most useful for different applications. The most stringent test of whether a stem cell line has sufficient developmental potential to generate all tissues required for survival of an organism (termed full pluripotency) is tetraploid embryo complementation (TEC)(3-5). Technically, TEC involves electrofusion of two-cell embryos to generate tetraploid (4n) one-cell embryos that can be cultured in vitro to the blastocyst stage(6). Diploid (2n) pluripotent stem cells (e.g. ESCs or iPSCs) are then injected into the blastocoel cavity of the tetraploid blastocyst and transferred to a recipient female for gestation (see Figure 1). The tetraploid component of the complemented embryo contributes almost exclusively to the extraembryonic tissues (placenta, yolk sac), whereas the diploid cells constitute the embryo proper, resulting in a fetus derived entirely from the injected stem cell line. Recently, we reported the derivation of iPSC lines that reproducibly generate adult mice via TEC(1). These iPSC lines give rise to viable pups with efficiencies of 5-13%, which is comparable to ESCs(3,4,7) and higher than that reported for most other iPSC lines(8-12). These reports show that direct reprogramming can produce fully pluripotent iPSCs that match ESCs in their developmental potential and efficiency of generating pups in TEC tests. At present, it is not clear what distinguishes between fully pluripotent iPSCs and less potent lines(13-15). Nor is it clear which reprogramming methods will produce these lines with the highest efficiency. Here we describe one method that produces fully pluripotent iPSCs and "all- iPSC" mice, which may be helpful for investigators wishing to compare the pluripotency of iPSC lines or establish the equivalence of different reprogramming methods.
    Journal of Visualized Experiments 01/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent landmark experiments have shown that transient overexpression of a small number of transcription factors can reprogram differentiated cells into induced pluripotent stem (iPS) cells that resemble embryonic stem (ES) cells. These iPS cells hold great promise for medicine because they have the potential to generate patient-specific cell types for cell replacement therapy and produce in vitro models of disease, without requiring embryonic tissues or oocytes. Although current iPS cell lines resemble ES cells, they have not passed the most stringent test of pluripotency by generating full-term or adult mice in tetraploid complementation assays, raising questions as to whether they are sufficiently potent to generate all of the cell types in an organism. Whether this difference between iPS and ES cells reflects intrinsic limitations of direct reprogramming is not known. Here we report fertile adult mice derived entirely from iPS cells that we generated by inducible genetic reprogramming of mouse embryonic fibroblasts. Producing adult mice derived entirely from a reprogrammed fibroblast shows that all features of a differentiated cell can be restored to an embryonic level of pluripotency without exposure to unknown ooplasmic factors. Comparing these fully pluripotent iPS cell lines to less developmentally potent lines may reveal molecular markers of different pluripotent states. Furthermore, mice derived entirely from iPS cells will provide a new resource to assess the functional and genomic stability of cells and tissues derived from iPS cells, which is important to validate their utility in cell replacement therapy and research applications.
    Nature 09/2009; 461(7260):91-4. · 38.60 Impact Factor