F. Yin

Duke University Medical Center, Durham, North Carolina, United States

Are you F. Yin?

Claim your profile

Publications (409)890.71 Total impact

  • Lei Ren, You Zhang, Fang-Fang Yin
    [Show abstract] [Hide abstract]
    ABSTRACT: Currently, no 3D or 4D volumetric x-ray imaging techniques are available for intrafraction verification of target position during actual treatment delivery or in-between treatment beams, which is critical for stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT) treatments. This study aims to develop a limited-angle intrafraction verification (LIVE) system to use prior information, deformation models, and limited angle kV-MV projections to verify target position intrafractionally. The LIVE system acquires limited-angle kV projections simultaneously during arc treatment delivery or in-between static 3D/IMRT treatment beams as the gantry moves from one beam to the next. Orthogonal limited-angle MV projections are acquired from the beam's eye view (BEV) exit fluence of arc treatment beam or in-between static beams to provide additional anatomical information. MV projections are converted to kV projections using a linear conversion function. Patient prior planning CT at one phase is used as the prior information, and the on-board patient volume is considered as a deformation of the prior images. The deformation field is solved using the data fidelity constraint, a breathing motion model extracted from the planning 4D-CT based on principal component analysis (PCA) and a free-form deformation (FD) model. LIVE was evaluated using a 4D digital extended cardiac torso phantom (XCAT) and a CIRS 008A dynamic thoracic phantom. In the XCAT study, patient breathing pattern and tumor size changes were simulated from CT to treatment position. In the CIRS phantom study, the artificial target in the lung region experienced both size change and position shift from CT to treatment position. Varian Truebeam research mode was used to acquire kV and MV projections simultaneously during the delivery of a dynamic conformal arc plan. The reconstruction accuracy was evaluated by calculating the 3D volume percentage difference (VPD) and the center of mass (COM) difference of the tumor in the true on-board images and reconstructed images. In both simulation and phantom studies, LIVE achieved substantially better reconstruction accuracy than reconstruction using PCA or FD deformation model alone. In the XCAT study, the average VPD and COM differences among different patient scenarios for LIVE system using orthogonal 30° scan angles were 4.3% and 0.3 mm when using kV+BEV MV. Reducing scan angle to 15° increased the average VPD and COM differences to 15.1% and 1.7 mm. In the CIRS phantom study, the VPD and COM differences for the LIVE system using orthogonal 30° scan angles were 6.4% and 1.4 mm. Reducing scan angle to 15° increased the VPD and COM differences to 51.9% and 3.8 mm. The LIVE system has the potential to substantially improve intrafraction target localization accuracy by providing volumetric verification of tumor position simultaneously during arc treatment delivery or in-between static treatment beams. With this improvement, LIVE opens up a new avenue for margin reduction and dose escalation in both fractionated treatments and SRS and SBRT treatments.
    Medical Physics 02/2014; 41(2):020701. · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sparing of single-side parotid gland is a common practice in head-and-neck (HN) intensity modulated radiation therapy (IMRT) planning. It is a special case of dose sparing tradeoff between different organs-at-risk. The authors describe an improved mathematical model for predicting achievable dose sparing in parotid glands in HN IMRT planning that incorporates single-side sparing considerations based on patient anatomy and learning from prior plan data. Among 68 HN cases analyzed retrospectively, 35 cases had physician prescribed single-side parotid sparing preferences. The single-side sparing model was trained with cases which had single-side sparing preferences, while the standard model was trained with the remainder of cases. A receiver operating characteristics (ROC) analysis was performed to determine the best criterion that separates the two case groups using the physician's single-side sparing prescription as ground truth. The final predictive model (combined model) takes into account the single-side sparing by switching between the standard and single-side sparing models according to the single-side sparing criterion. The models were tested with 20 additional cases. The significance of the improvement of prediction accuracy by the combined model over the standard model was evaluated using the Wilcoxon rank-sum test. Using the ROC analysis, the best single-side sparing criterion is (1) the predicted median dose of one parotid is higher than 24 Gy; and (2) that of the other is higher than 7 Gy. This criterion gives a true positive rate of 0.82 and a false positive rate of 0.19, respectively. For the bilateral sparing cases, the combined and the standard models performed equally well, with the median of the prediction errors for parotid median dose being 0.34 Gy by both models (p = 0.81). For the single-side sparing cases, the standard model overestimates the median dose by 7.8 Gy on average, while the predictions by the combined model differ from actual values by only 2.2 Gy (p = 0.005). Similarly, the sum of residues between the modeled and the actual plan DVHs is the same for the bilateral sparing cases by both models (p = 0.67), while the standard model predicts significantly higher DVHs than the combined model for the single-side sparing cases (p = 0.01). The combined model for predicting parotid sparing that takes into account single-side sparing improves the prediction accuracy over the previous model.
    Medical Physics 02/2014; 41(2):021728. · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose is to dosimetrically compare the following 3 delivery techniques: 3-dimensional conformal radiation therapy (3D-CRT), intensity-modulated arc therapy (IMRT), and volumetric-modulated arc therapy (V-MAT) in the treatment of accelerated partial-breast irradiation (APBI). Overall, 16 patients with T1/2N0 breast cancer were treated with 3D-CRT (multiple, noncoplanar photon fields) on the RTOG 0413 partial-breast trial. These cases were subsequently replanned using static gantry IMRT and V-MAT technology to understand dosimetric differences among these 3 techniques. Several dosimetric parameters were used in plan quality evaluation, including dose conformity index (CI) and dose-volume histogram analysis of normal tissue coverage. Quality assurance studies including gamma analysis were performed to compare the measured and calculated dose distributions. The IMRT and V-MAT plans gave more conformal target dose distributions than the 3D-CRT plans (p < 0.05 in CI). The volume of ipsilateral breast receiving 5 and 10Gy was significantly less using the V-MAT technique than with either 3D-CRT or IMRT (p < 0.05). The maximum lung dose and the ipsilateral lung volume receiving 10 (V10) or 20Gy (V20) were significantly less with both V-MAT and IMRT (p < 0.05). The IMRT technique was superior to 3D-CRT and V-MAT of low dose distributions in ipsilateral lung (p < 0.05 in V5 and D5). The total mean monitor units (MUs) for V-MAT (621.0 ± 111.9) were 12.2% less than those for 3D-CRT (707.3 ± 130.9) and 46.5% less than those for IMRT (1161.4 ± 315.6) (p < 0.05). The average machine delivery time was 1.5 ± 0.2 minutes for the V-MAT plans, 7.0 ± 1.6 minutes for the 3D-CRT plans, and 11.5 ± 1.9 minutes for the IMRT plans, demonstrating much less delivery time for V-MAT. Based on this preliminary study, V-MAT and IMRT techniques offer improved dose conformity as compared with 3D-CRT techniques without increasing dose to the ipsilateral lung. In terms of MU and delivery time, V-MAT is significantly more efficient for APBI than for conventional 3D-CRT and static-beam IMRT.
    Medical dosimetry: official journal of the American Association of Medical Dosimetrists 01/2014; · 1.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the feasibility of a retrospective binning technique for 4-dimensional magnetic resonance imaging (4D-MRI) using body area (BA) as a respiratory surrogate. Seven patients with hepatocellular carcinoma (4 of 7) or liver metastases (3 of 7) were enrolled in an institutional review board-approved prospective study. All patients were simulated with both computed tomography (CT) and MRI to acquire 3-dimensinal and 4D images for treatment planning. Multiple-slice multiple-phase cine-MR images were acquired in the axial plane for 4D-MRI reconstruction. Image acquisition time per slice was set to 10-15 seconds. Single-slice 2-dimensinal cine-MR images were also acquired across the center of the tumor in orthogonal planes. Tumor motion trajectories from 4D-MRI, cine-MRI, and 4D-CT were analyzed in the superior-inferior (SI), anterior-posterior (AP), and medial-lateral (ML) directions, respectively. Their correlation coefficients (CC) and differences in tumor motion amplitude were determined. Tumor-to-liver contrast-to-noise ratio (CNR) was measured and compared between 4D-CT, 4D-MRI, and conventional T2-weighted fast spin echo MRI. The means (±standard deviations) of CC comparing 4D-MRI with cine-MRI were 0.97 ± 0.03, 0.97 ± 0.02, and 0.99 ± 0.04 in SI, AP, and ML directions, respectively. The mean differences were 0.61 ± 0.17 mm, 0.32 ± 0.17 mm, and 0.14 ± 0.06 mm in SI, AP, and ML directions, respectively. The means of CC comparing 4D-MRI and 4D-CT were 0.95 ± 0.02, 0.94 ± 0.02, and 0.96 ± 0.02 in SI, AP, and ML directions, respectively. The mean differences were 0.74 ± 0.02 mm, 0.33 ± 0.13 mm, and 0.18 ± 0.07 mm in SI, AP, and ML directions, respectively. The mean tumor-to-tissue CNRs were 2.94 ± 1.51, 19.44 ± 14.63, and 39.47 ± 20.81 in 4D-CT, 4D-MRI, and T2-weighted MRI, respectively. The preliminary evaluation of our 4D-MRI technique results in oncologic patients demonstrates its potential usefulness to accurately measure tumor respiratory motion with improved tumor CNR compared with 4D-CT.
    International journal of radiation oncology, biology, physics 01/2014; · 4.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Onboard imaging-currently performed primarily by x-ray transmission modalities-is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT.Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer.Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system.Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min scan times.
    Medical Physics 01/2014; 41(1):010701. · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose To evaluate the relationship between liver tumor motion and diaphragm motion. Methods and Materials Fourteen patients with hepatocellular carcinoma (10 of 14) or liver metastases (4 of 14) undergoing radiation therapy were included in this study. All patients underwent single-slice cine–magnetic resonance imaging simulations across the center of the tumor in 3 orthogonal planes. Tumor and diaphragm motion trajectories in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions were obtained using an in-house-developed normalized cross-correlation–based tracking technique. Agreement between the tumor and diaphragm motion was assessed by calculating phase difference percentage, intraclass correlation coefficient, and Bland-Altman analysis (DiffDiff). The distance between the tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between the 2 motions. Results Of all patients, the mean (±standard deviation) phase difference percentage values were 7.1% ± 1.1%, 4.5% ± 0.5%, and 17.5% ± 4.5% in the SI, AP, and ML directions, respectively. The mean intraclass correlation coefficient values were 0.98 ± 0.02, 0.97 ± 0.02, and 0.08 ± 0.06 in the SI, AP, and ML directions, respectively. The mean Diff values were 2.8 ± 1.4 mm, 2.4 ± 1.1 mm, and 2.2 ± 0.5 mm in the SI, AP, and ML directions, respectively. Tumor and diaphragm motions had high concordance when the distance between the tumor and tracked diaphragm area was small. Conclusions This study showed that liver tumor motion had good correlation with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be used as a reliable surrogate for liver tumor motion.
    International journal of radiation oncology, biology, physics 01/2014; · 4.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To quantitatively evaluate dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer. Overall, 11 lung SBRT patients (8 female and 3 male; mean age: 75.0 years) with medially located tumors were included. Treatment plans with simulated rotational offsets of 1°, 3°, and 5° in roll, yaw, and pitch were generated and compared with the original plans. Both clockwise and counterclockwise rotations were investigated. The following dosimetric metrics were quantitatively evaluated: planning target volume coverage (PTV V100%), max PTV dose (PTV Dmax), percentage prescription dose to 0.35 cc of cord (cord D0.35 cc), percentage prescription dose to 0.35 cc and 5 cc of esophagus (esophagus D0.35 cc and D5 cc), and volume of the lungs receiving at least 20 Gy (lung V20). Statistical significance was tested using Wilcoxon signed rank test at the significance level of 0.05. Overall, small differences were found in all dosimetric matrices at all rotational offsets: 95.6% of differences were < 1% or < 1 Gy. Of all rotational offsets, largest change in PTV V100%, PTV Dmax, cord D0.35 cc, esophagus D0.35 cc, esophagus D5 cc, and lung V20 was − 8.36%, − 6.06%, 11.96%, 8.66%, 6.02%, and − 0.69%, respectively. No significant correlation was found between any dosimetric change and tumor-to-cord/esophagus distances (R2 range: 0 to 0.44). Larger dosimetric changes and intersubject variations were observed at larger rotational offsets. Small dosimetric differences were found owing to rotational offsets up to 5° in lung SBRT for medially located tumors. Larger intersubject variations were observed at larger rotational offsets.
    Medical dosimetry: official journal of the American Association of Medical Dosimetrists 01/2014; 39(1):117–121. · 1.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate how well tumor motion measured prior to treatment based on 4-dimensional computer tomography (4DCT) reflects actual tumor motion during beam-on throughout the course of treatment. Twenty-three patients who had lung stereotactic body radiation therapy (SBRT) treatments were retrospectively selected. All patients had 4DCT simulation for treatment planning, from which tumor motion ranges were measured (R4DCT). Tumor motion was monitored during treatment using megavoltage (MV) imaging. Tumor motion trajectories were extracted from cine MV images and were used to determine mean and maximum tumor motion range (Mean RMV, Max RMV) throughout entire course of treatment. Comparison and correlations between mean and max RMV and R4DCT were calculated. On average, an insignificant difference was found between mean RMV and R4DCT (P = .67, mean [±SD] difference = -0.7 [±1.6] mm); meanwhile a significant difference was found between Max RMV and R4DCT (P = .03, mean [± SD] difference = 1.9 [±1.6] mm). The difference between RMV and R4DCT was found inversely proportional to R4DCT (Y = -0.4X + 0.6, r = 0.76). Max RMV was greater than R4DCT in all patients; difference between the 2 showed no correlation with R4DCT (Y = -0.02X + 1.9, r = 0.05). Correlation between Mean RMV and R4DCT and between Max RMV and R4DCT can be expressed as Y = 0.7X (r = 0.88) and Y = 0.8X (r = 0.50), respectively. The same analysis performed on tumors that moved less than 5 mm from 4DCT revealed the following correlations: Y = 1.3X (r = 0.83) and Y = 1.7X (r = 0.49). Tumor motion measured from 4DCT approximates the overall average tumor motion range, but consistently underestimates the overall maximum tumor motion range. These findings may lead to a potential strategy for managing uncertainties of 4DCT in the application of lung SBRT.
    Practical radiation oncology. 01/2014; 4(1):e59-65.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To review IGRT credentialing experience and unexpected technical issues encountered in connection with advanced radiotherapy technologies as implemented in RTOG clinical trials. To update IGRT credentialing procedures with the aim of improving the quality of the process, and to increase the proportion of IGRT credentialing compliance. To develop a living disease site-specific IGRT encyclopedia. Methods: Numerous technical issues were encountered during the IGRT credentialing process. The criteria used for credentialing review were based on: image quality; anatomy included in fused data sets and shift results. Credentialing requirements have been updated according to the AAPM task group reports for IGRT to ensure that all required technical items are included in the quality review process. Implementation instructions have been updated and expanded for recent protocols. Results: Technical issues observed during the credentialing review process include, but are not limited to: poor quality images; inadequate image acquisition region; poor data quality; shifts larger than acceptable; no soft tissue surrogate. The updated IGRT credentialing process will address these issues and will also include the technical items required from AAPM: TG 104; TG 142 and TG 179 reports. An instruction manual has been developed describing a remote credentialing method for reviewers. Submission requirements are updated, including images/documents as well as facility questionnaire. The review report now includes summary of the review process and the parameters that reviewers check. We have reached consensus on the minimum IGRT technical requirement for a number of disease sites. RTOG 1311(NRG-BR002A Phase 1 Study of Stereotactic Body Radiotherapy (SBRT) for the Treatment of Multiple Metastases) is an example, here; the protocol specified the minimum requirement for each anatomical sites (with/without fiducials). Conclusion: Technical issues are identified and reported. IGRT guidelines are updated, with the corresponding credentialing requirements. An IGRT encyclopedia describing site-specific implementation issues is currently in development.
    Medical Physics 01/2014; 41(6):387. · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stereotactic body radiotherapy (SBRT) involves the treatment of extracranial primary tumors or metastases with a few, high doses of ionizing radiation. In SBRT, tumor kill is maximized and dose to surrounding tissue is minimized, by precise and accurate delivery of multiple radiation beams to the target. This is particularly challenging, because extracranial lesions often move with respiration and are irregular in shape, requiring careful treatment planning and continual management of this motion and patient position during irradiation. This review presents the rationale, process workflow, and technology for the safe and effective administration of SBRT, as well as the indications, outcome, and limitations for this technique in the treatment of lung cancer, liver cancer, and metastatic disease. Cancer 2013;. © 2013 American Cancer Society.
    Cancer 12/2013; · 5.20 Impact Factor
  • Anna Rodrigues, Fang-Fang Yin, Qiuwen Wu
    [Show abstract] [Hide abstract]
    ABSTRACT: Compared to other radiation therapy modalities, clinical electron beam therapy has remained practically unchanged for the past few decades even though electron beams with multiple energies are widely available on most linacs. In this paper, we present the concept of dynamic electron arc radiotherapy (DEAR), a new conformal electron therapy technique with synchronized couch motion. DEAR utilizes combination of gantry rotation, couch motion, and dose rate modulation to achieve desirable dose distributions in patient. The electron applicator is kept to minimize scatter and maintain narrow penumbra. The couch motion is synchronized with the gantry rotation to avoid collision between patient and the electron cone. In this study, we investigate the feasibility of DEAR delivery and demonstrate the potential of DEAR to improve dose distributions on simple cylindrical phantoms. DEAR was delivered on Varian's TrueBeam linac in Research Mode. In conjunction with the recorded trajectory log files, mechanical motion accuracies and dose rate modulation precision were analyzed. Experimental and calculated dose distributions were investigated for different energies (6 and 9 MeV) and cut-out sizes (1×10 cm(2) and 3×10 cm(2) for a 15×15 cm(2) applicator). Our findings show that DEAR delivery is feasible and has the potential to deliver radiation dose with high accuracy (root mean square error, or RMSE of <0.1 MU, <0.1° gantry, and <0.1 cm couch positions) and good dose rate precision (1.6 MU min(-1)). Dose homogeneity within ±2% in large and curved targets can be achieved while maintaining penumbra comparable to a standard electron beam on a flat surface. Further, DEAR does not require fabrication of patient-specific shields. These benefits make DEAR a promising technique for conformal radiotherapy of superficial tumors.
    Physics in Medicine and Biology 12/2013; 59(2):327-345. · 2.70 Impact Factor
  • You Zhang, Fang-Fang Yin, W Paul Segars, Lei Ren
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To develop a technique to estimate onboard 4D-CBCT using prior information and limited-angle projections for potential 4D target verification of lung radiotherapy.Methods: Each phase of onboard 4D-CBCT is considered as a deformation from one selected phase (prior volume) of the planning 4D-CT. The deformation field maps (DFMs) are solved using a motion modeling and free-form deformation (MM-FD) technique. In the MM-FD technique, the DFMs are estimated using a motion model which is extracted from planning 4D-CT based on principal component analysis (PCA). The motion model parameters are optimized by matching the digitally reconstructed radiographs of the deformed volumes to the limited-angle onboard projections (data fidelity constraint). Afterward, the estimated DFMs are fine-tuned using a FD model based on data fidelity constraint and deformation energy minimization. The 4D digital extended-cardiac-torso phantom was used to evaluate the MM-FD technique. A lung patient with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume, including changes of respiration amplitude, lesion size and lesion average-position, and phase shift between lesion and body respiratory cycle. The lesions were contoured in both the estimated and "ground-truth" onboard 4D-CBCT for comparison. 3D volume percentage-difference (VPD) and center-of-mass shift (COMS) were calculated to evaluate the estimation accuracy of three techniques: MM-FD, MM-only, and FD-only. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy.Results: For all simulated patient and projection acquisition scenarios, the mean VPD (±S.D.)∕COMS (±S.D.) between lesions in prior images and "ground-truth" onboard images were 136.11% (±42.76%)∕15.5 mm (±3.9 mm). Using orthogonal-view 15°-each scan angle, the mean VPD∕COMS between the lesion in estimated and "ground-truth" onboard images for MM-only, FD-only, and MM-FD techniques were 60.10% (±27.17%)∕4.9 mm (±3.0 mm), 96.07% (±31.48%)∕12.1 mm (±3.9 mm) and 11.45% (±9.37%)∕1.3 mm (±1.3 mm), respectively. For orthogonal-view 30°-each scan angle, the corresponding results were 59.16% (±26.66%)∕4.9 mm (±3.0 mm), 75.98% (±27.21%)∕9.9 mm (±4.0 mm), and 5.22% (±2.12%)∕0.5 mm (±0.4 mm). For single-view scan angles of 3°, 30°, and 60°, the results for MM-FD technique were 32.77% (±17.87%)∕3.2 mm (±2.2 mm), 24.57% (±18.18%)∕2.9 mm (±2.0 mm), and 10.48% (±9.50%)∕1.1 mm (±1.3 mm), respectively. For projection angular-sampling-intervals of 0.6°, 1.2°, and 2.5° with the orthogonal-view 30°-each scan angle, the MM-FD technique generated similar VPD (maximum deviation 2.91%) and COMS (maximum deviation 0.6 mm), while sparser sampling yielded larger VPD∕COMS. With equal number of projections, the estimation results using scattered 360° scan angle were slightly better than those using orthogonal-view 30°-each scan angle. The estimation accuracy of MM-FD technique declined as noise level increased.Conclusions: The MM-FD technique substantially improves the estimation accuracy for onboard 4D-CBCT using prior planning 4D-CT and limited-angle projections, compared to the MM-only and FD-only techniques. It can potentially be used for the inter/intrafractional 4D-localization verification.
    Medical Physics 12/2013; 40(12):121701. · 2.91 Impact Factor
  • Susu Yan, James Bowsher, Fang-Fang Yin
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: In order to achieve functional and molecular imaging as patients are in position for radiation therapy, a robotic multipinhole SPECT system is being developed. Alignment of the SPECT system-to the linear accelerator (LINAC) coordinate frame and to the coordinate frames of other on-board imaging systems such as cone-beam CT (CBCT)-is essential for target localization and image reconstruction. An alignment method that utilizes line sources and one pinhole projection is proposed and investigated to achieve this goal. Potentially, this method could also be applied to the calibration of the other pinhole SPECT systems.Methods: An alignment model consisting of multiple alignment parameters was developed which maps line sources in three-dimensional (3D) space to their two-dimensional (2D) projections on the SPECT detector. In a computer-simulation study, 3D coordinates of line-sources were defined in a reference room coordinate frame, such as the LINAC coordinate frame. Corresponding 2D line-source projections were generated by computer simulation that included SPECT blurring and noise effects. The Radon transform was utilized to detect angles (α) and offsets (ρ) of the line-source projections. Alignment parameters were then estimated by a nonlinear least squares method, based on the α and ρ values and the alignment model. Alignment performance was evaluated as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise, and acquisition geometry. Experimental evaluations were performed using a physical line-source phantom and a pinhole-collimated gamma camera attached to a robot.Results: In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, six alignment parameters (three translational and three rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by the Radon transform, estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution, and detector acquisition geometry. Statistically, the estimation accuracy was significantly improved by using four line sources rather than three and by thinner line-source projections (obtained by better intrinsic detector resolution). With five line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt, and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist.Conclusions: Alignment parameters can be estimated using one pinhole projection of line sources. Alignment errors are largely associated with limited accuracy of the Radon transform in determining angles (α) and offsets (ρ) of the line-source projections. This alignment method may be important for multipinhole SPECT, where relative pinhole alignment may vary during rotation. For pinhole and multipinhole SPECT imaging on-board radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC.
    Medical Physics 12/2013; 40(12):122501. · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Adaptive radiation therapy for prostate cancer using online reoptimization provides an improved control of interfractional anatomy variations. However, the clinical implementation of online reoptimization is currently limited by the low efficiency of current strategies and the difficulties associated with integration into the current treatment planning system. This study investigates the strategies for performing fast (∼2 min) automatic online reoptimization with a clinical fluence-map-based treatment planning system; and explores the performance with different input parameters settings: dose-volume histogram (DVH) objective settings, starting stage, and iteration number (in the context of real time planning).Methods: Simulated treatments of 10 patients were reoptimized daily for the first week of treatment (5 fractions) using 12 different combinations of optimization strategies. Options for objective settings included guideline-based RTOG objectives, patient-specific objectives based on anatomy on the planning CT, and daily-CBCT anatomy-based objectives adapted from planning CT objectives. Options for starting stages involved starting reoptimization with and without the original plan's fluence map. Options for iteration numbers were 50 and 100. The adapted plans were then analyzed by statistical modeling, and compared both in terms of dosimetry and delivery efficiency.Results: All online reoptimized plans were finished within ∼2 min with excellent coverage and conformity to the daily target. The three input parameters, i.e., DVH objectives, starting stage, and iteration number, contributed to the outcome of optimization nearly independently. Patient-specific objectives generally provided better OAR sparing compared to guideline-based objectives. The benefit in high-dose sparing from incorporating daily anatomy into objective settings was positively correlated with the relative change in OAR volumes from planning CT to daily CBCT. The use of the original plan fluence map as the starting stage reduced OAR dose at the mid-dose region, but increased the monitor units by 17%. Differences of only 2cc or less in OAR V50%∕V70Gy∕V76Gy were observed between 100 and 50 iterations.Conclusions: It is feasible to perform automatic online reoptimization in ∼2 min using a clinical treatment planning system. Selecting optimal sets of input parameters is the key to achieving high quality reoptimized plans, and should be based on the individual patient's daily anatomy, delivery efficiency, and time allowed for plan adaptation.
    Medical Physics 11/2013; 40(11):111711. · 2.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background and purpose: To report single institution's IGRT and dosimetry analysis on the 37Gy/5frcation prostate SBRT clinical trial.Materials/methods: The IRB (Duke University Medical Center) approved clinical trial has treated 28 patients with stage T1-T2c prostate cancer with a regimen of 37Gy in 5 fractions using IMRT and IGRT protocols since 2009. The clinical trial protocol requires CT/MRI imaging for the prostate delineation; a margin of 3 mm in posterior direction and 5 mm elsewhere for planning target volume (PTV); and strict dose constraints for primary organs-at-risks (OARs) including the bladder, the rectum, and the femoral heads. Rigid IGRT process is also an essential part of the protocol. Precise patient and prostate positioning and dynamic tracking of prostate motion are performed with electromagnetic localization device (Calypso) and on-board imaging (OBI) system. Initial patient and target alignment is performed based on fiducials with OBI imaging system and Calypso system. Prior to treatment, cone-beam CT (CBCT) is performed for soft tissue alignment verification. During treatment, per-beam corrections for target motion using translational couch movements is performed before irradiating each field, based on electromagnetic localization or on-board imaging localization. Dosimetric analysis on target coverage and OAR sparing is performed based on key DVH parameters corresponding to protocol guidance. IGRT analysis is focused on the average frequency and magnitude of corrections during treatment, and overall intra-fractional target drift. A margin value is derived using actual target motion data and the margin recipe from Van Herk et al., and is compared to the current one in practice. In addition, cumulative doses with and without per-beam IGRT corrections are compared to assess the benefit of online IGRT. 1. No deviation has been found in 10 of 14 dosimetric constraints, with minor deviations in the rest 4 constraints.2. Online IGRT techniques including Calypso, OBI and CBCT supplement each other to create an effective and reliable system on tracking target and correcting intra-fractional motion.3. On average 1/2 corrections have been performed per fraction, with magnitude of (0.22 +/- 0.11) cm. Average target drift magnitude is (0.7 +/- 1.3) mm in one direction during each fraction.4. Benefit from per-beam correction in overall review is small: most differences from no correction are < 0.1 Gy for PTV D1cc/Dmean and < 1%/1.5 cc for OAR parameters. Up to 1.5 Gy reduction was seen in PTV D99% without online correction. Largest differences for OARs are -4.1 cc and +1.6 cc in the V50% for the bladder and the rectum, respectively. However, online IGRT helps to catch unexpected significant target motion.5. Margin derived from actual target motion is 2.5 mm isotropic, consist with current practice. Clinical experience of the 37Gy/5-fraction prostate SBRT from a single institution is reported. Dosimetric analysis demonstrated excellent target coverage and OAR sparing for our first 28 patients in this trial. Online IGRT techniques implemented are both effective and reliable. Per-beam correction in general provides a small benefit in dosimetry. Target motion measured by online localization devices confirms that current margin selection is adequate.
    Radiation Oncology 09/2013; 8(1):215. · 2.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Volumetric modulated arc therapy (VMAT) is a relatively new treatment modality for dynamic photon radiation therapy. Pre-treatment quality assurance (QA) is necessary and many efforts have been made to apply electronic portal imaging device (EPID)-based IMRT QA methods to VMAT. It is important to verify the gantry rotation speed during delivery as this is a new variable that is also modulated in VMAT. In this paper, we present a new technique to perform VMAT QA using an EPID. The method utilizes EPID cine mode and was tested on Varian TrueBeam in research mode. The cine images were acquired during delivery and converted to dose matrices after profile correction and dose calibration. A sub-arc corresponding to each cine image was extracted from the original plan and its portal image prediction was calculated. Several analyses were performed including 3D γ analysis (2D images + gantry angle axis), 2D γ analysis, and other statistical analyses. The method was applied to 21 VMAT photon plans of 3 photon energies. The accuracy of the cine image information was investigated. Furthermore, this method's sensitivity to machine delivery errors was studied. The pass rate (92.8 ± 1.4%) for 3D γ analysis was comparable to those from Delta(4) system (99.9 ± 0.1%) under similar criteria (3%, 3 mm, 5% threshold and 2° angle to agreement) at 6 MV. The recorded gantry angle and start/stop MUs were found to have sufficient accuracy for clinical QA. Machine delivery errors can be detected through combined analyses of 3D γ, gantry angle, and percentage dose difference. In summary, we have developed and validated a QA technique that can simultaneously verify the gantry angle and delivered MLC fluence for VMAT treatment.This technique is efficient and its accuracy is comparable to other QA methods.
    Physics in Medicine and Biology 09/2013; 58(19):6683-6700. · 2.70 Impact Factor
  • International journal of radiation oncology, biology, physics 09/2013; 87(1):5-6. · 4.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this article, the application of radiotherapy, alone and in combination with surgery and chemotherapy, in the treatment of metastases to the brain (the most common malignant brain lesion), primary malignant gliomas (the most common malignant primary brain tumor), and metastases to the osseous spine is reviewed. Brain metastases may be treated with surgical resection, whole-brain radiotherapy, stereotactic radiosurgery, or some combination of these treatments. The optimum treatment of brain metastases is a matter of controversy, and patient and disease factors favoring one approach over another are presented.
    Surgical Oncology Clinics of North America 07/2013; 22(3):445-61. · 1.22 Impact Factor
  • You Zhang, Lei Ren, C Clifton Ling, Fang-Fang Yin
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To develop a respiration-phase-matched digital tomosynthesis (DTS) technique to monitor moving targets, and to evaluate its accuracy for various imaging parameters and anatomical characteristics.Methods: Previously developed 3D-DTS techniques, registering onboard DTS (OB-DTS, reconstructed from onboard projections) to reference DTS (R-DTS, reconstructed from DRRs of 3D reference CT), are inadequate to monitor moving targets. The authors' proposed respiration-phase-matched DTS technique registers OB-DTS to R-DTS reconstructed from DRRs generated by the same phase images of 4D reference CT as the corresponding onboard projections. To evaluate the improved accuracy of the author's technique, the authors performed thoracic phantom studies using (1) simulation with the 4D digital extended-cardiac-torso (XCAT) phantom, and (2) experiments with an anthropomorphic motion phantom. The studies were performed for various: respiratory cycle (RC), scan angle, and fraction of RC contained therein. Also, the authors assessed the accuracy of their technique relative to target size∕location, and respiration inconsistencies from the R-DTS to OB-DTS.Results: In both simulation and experimental studies, the respiration-phase-matched DTS technique is significantly more accurate in determining moving target positions. For 324 different scenarios simulated by XCAT, the respiration-phase-matched DTS technique localizes the 3D target position to errors of 1.07 ± 0.57 mm (mean ± S.D.), as compared to (a) 2.58 ± 1.37 and (b) 7.37 ± 4.18 mm, for 3D-DTS using 3D reference CT of (a) average intensity projection and (b) free-breathing CT. For 60 scenarios evaluated through experimental study, the uncertainties corresponding to those above are 1.24 ± 0.87, 2.42 ± 1.80, and 5.77 ± 6.45 mm, respectively. For a given scan angle, the accuracy of respiration-phase-matched DTS technique is less dependent on RC and the fraction of RC included in the scan. Increasing scan angle improves its accuracy. For different target locations, the targets near the chest wall or in the middle of lung provide higher registration accuracy compared to those near the mediastinum and diaphragm. Larger targets provide higher registration accuracy than small targets. Different respiratory cycle inconsistencies from R-DTS to OB-DTS minimally affect the registration accuracy. Increasing the respiratory amplitude inconsistencies will decrease the accuracy.Conclusions: The respiration-phase-matched DTS is more accurate and robust in determining moving target positions than 3D-DTS. It has potential application in pretreatment setup, post-treatment analysis, and intrafractional target verification.
    Medical Physics 07/2013; 40(7):071723. · 2.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the dosimetric effects of adaptive planning on lung stereotactic body radiation therapy (SBRT). Forty of 66 consecutive lung SBRT patients were selected for a retrospective adaptive planning study. CBCT images acquired at each fraction were used for treatment planning. Adaptive plans were created using the same planning parameters as the original CT-based plan, with the goal to achieve comparable comformality index (CI). For each patient, 2 cumulative plans, nonadaptive plan (PNON) and adaptive plan (PADP), were generated and compared for the following organs-at-risks (OARs): cord, esophagus, chest wall, and the lungs. Dosimetric comparison was performed between PNON and PADP for all 40 patients. Correlations were evaluated between changes in dosimetric metrics induced by adaptive planning and potential impacting factors, including tumor-to-OAR distances (dT-OAR), initial internal target volume (ITV1), ITV change (ΔITV), and effective ITV diameter change (ΔdITV). 34 (85%) patients showed ITV decrease and 6 (15%) patients showed ITV increase throughout the course of lung SBRT. Percentage ITV change ranged from -59.6% to 13.0%, with a mean (±SD) of -21.0% (±21.4%). On average of all patients, PADP resulted in significantly (P=0 to .045) lower values for all dosimetric metrics. ΔdITV/dT-OAR was found to correlate with changes in dose to 5 cc (ΔD5cc) of esophagus (r=0.61) and dose to 30 cc (ΔD30cc) of chest wall (r=0.81). Stronger correlations between ΔdITV/dT-OAR and ΔD30cc of chest wall were discovered for peripheral (r=0.81) and central (r=0.84) tumors, respectively. Dosimetric effects of adaptive lung SBRT planning depend upon target volume changes and tumor-to-OAR distances. Adaptive lung SBRT can potentially reduce dose to adjacent OARs if patients present large tumor volume shrinkage during the treatment.
    International journal of radiation oncology, biology, physics 06/2013; · 4.59 Impact Factor

Publication Stats

2k Citations
890.71 Total Impact Points

Institutions

  • 2005–2014
    • Duke University Medical Center
      • • Department of Radiation Oncology
      • • Department of Radiology
      Durham, North Carolina, United States
    • Tsinghua University
      • Department of Automation
      Beijing, Beijing Shi, China
  • 2013
    • Beijing University of Aeronautics and Astronautics (Beihang University)
      Peping, Beijing, China
  • 2006–2013
    • Duke University
      Durham, North Carolina, United States
  • 2009–2012
    • Universität Heidelberg
      • Department of Radiation Oncology
      Heidelburg, Baden-Württemberg, Germany
    • Fudan University
      Shanghai, Shanghai Shi, China
    • Good Samaritan Health System
      Lebanon, Pennsylvania, United States
  • 2004–2011
    • Henry Ford Health System
      • Department of Radiation Oncology
      Detroit, Michigan, United States
  • 2010
    • University of Virginia
      Charlottesville, Virginia, United States
    • Case Western Reserve University
      • Department of Electrical Engineering and Computer Science
      Cleveland, Ohio, United States
  • 2003–2005
    • Henry Ford Hospital
      • Department of Radiation Oncology
      Detroit, MI, United States