Thomas F Gajewski

University of Chicago, Chicago, Illinois, United States

Are you Thomas F Gajewski?

Claim your profile

Publications (208)1435.35 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T cells have the capacity to eliminate tumors but the signaling pathways by which they do so are incompletely understood. T cell priming requires activation of the transcription factors AP-1, NFAT and NF-κB downstream of the TCR, but whether activation of T cell-NF-κB in vivo is required for tumor control has not been addressed. In humans and mice with progressively growing tumors, the activity of T cell-intrinsic NF-κB is often reduced. However, it is not clear if this is causal for an inability to reject transformed cells, or if it is a consequence of tumor growth. T cell-NF-κB is important for T cell survival and effector differentiation and plays an important role in enabling T cells to reject cardiac and islet allografts, suggesting the possibility that it may also be required for tumor elimination. In this study, we tested whether normal T cell-NF-κB activation is necessary for the rejection of tumors whose growth is normally controlled by the immune system. Mice with genetically impaired T cell-NF-κB activity were subcutaneously injected with MC57-SIY tumor cells. Tumor growth was measured over time, and the anti-tumor immune response was evaluated using flow cytometry and cytokine detection assays. Mice with impaired T cell-NF-κB activity were unable to reject tumors that were otherwise eliminated by wildtype mice, despite equal accumulation of tumor-reactive T cells. In addition, specific impairment of NF-κB signaling downstream of the TCR was sufficient to prevent tumor rejection. Tumor antigen-specific T cell-IFN-γ and TNF-α production, as well as cytotoxic ability, were all reduced in mice with impaired T cell-NF-κB, suggesting an important role for this transcription factor in the effector differentiation of tumor-specific effector T cells. Our results have identified the NF-κB pathway as an important signaling axis in T cells, required for the elimination of growing tumors in vivo. Maintaining or enhancing T cell-NF-κB activity may be a promising avenue for anti-tumor immunotherapy.
    12/2015; 3(1):1. DOI:10.1186/s40425-014-0045-x
  • Seng-Ryong Woo, Leticia Corrales, Thomas F Gajewski
    [Show abstract] [Hide abstract]
    ABSTRACT: A major subset of patients with advanced solid tumors show a spontaneous T cell-inflamed tumor microenvironment, which has prognostic import and is associated with clinical response to immunotherapies. As such, understanding the mechanisms governing the generation of spontaneous T cell responses in only a subset of patients is critical for advancing immunotherapeutic approaches further. Here, we discuss the characteristics of T cell-inflamed versus non-inflamed tumors, including a type I interferon (IFN) signature associated with T cell priming against tumor antigens. We review recent findings that have pointed towards the STING (stimulator of interferon genes) pathway of cytosolic DNA sensing as an important innate immune sensing mechanism driving type I IFN production in the tumor context. Knowledge of this pathway is guiding the further development of novel immunotherapeutic strategies. Copyright © 2015. Published by Elsevier Ltd.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Although durable responses can be achieved with tyrosine kinase inhibitors such as imatinib in melanomas harboring KIT mutations, the efficacy of alternative inhibitors after progression to imatinib and the activity of these agents on brain metastases is unknown. Experimental Design: We conducted a phase II study of nilotinib 400 mg BID in two cohorts of patients with melanomas harboring KIT mutations or amplification: A) those refractory or intolerant to a prior KIT inhibitor; and B) those with brain metastases. The primary endpoint was 4-month disease control rate. Secondary endpoints included response rate, time-to-progression and overall survival. A Simon two-stage and a single-stage design was planned to assess for the primary endpoint in Cohorts A and B, respectively. Results: Twenty patients were enrolled and 19 treated (11-Cohort A; 8-Cohort B). Three patients on Cohort A (27%; 95% CI, 8% - 56%) and 1 on Cohort B (12.5%; 90% CI, 0.6% - 47%) achieved the primary endpoint. Two partial responses were observed in Cohort A (18.2%, 90% CI, 3% - 47%); none were observed in Cohort B. The median time-to-progression and overall survival was 3·3 (90% CI, 2.1 - 3.9 months) and 9.1 months (90% CI, 4.3 - 14.2 months), respectively, in all treated patients. Conclusion: Nilotinib may achieve disease control in patients with melanoma harboring KIT alterations and whose disease progressed after imatinib therapy. The efficacy of this agent in KIT altered melanoma with brain metastasis is limited. Copyright © 2015, American Association for Cancer Research.
    Clinical Cancer Research 02/2015; DOI:10.1158/1078-0432.CCR-14-1630 · 8.19 Impact Factor
  • Source
    Seng-Ryong Woo, Leticia Corrales, Thomas F Gajewski
    [Show abstract] [Hide abstract]
    ABSTRACT: The observation that a subset of cancer patients show evidence for spontaneous CD8(+) Tcell priming against tumor-associated antigens has generated renewed interest in the innate immune pathways that might serve as a bridge to an adaptive immune response to tumors. Manipulation of this endogenous T cell response with therapeutic intent-for example, using blocking antibodies inhibiting PD-1/PD-L1 (programmed death-1/programmed death ligand 1) interactions-is showing impressive clinical results. As such, understanding the innate immune mechanisms that enable this T cell response has important clinical relevance. Defined innate immune interactions in the cancer context include recognition by innate cell populations (NK cells, NKT cells, and γδ T cells) and also by dendritic cells and macrophages in response to damage-associated molecular patterns (DAMPs). Recent evidence has indicated that the major DAMP driving host antitumor immune responses is tumor-derived DNA, sensed by the stimulator of interferon gene (STING) pathway and driving type I IFN production. A deeper knowledge of the clinically relevant innate immune pathways involved in the recognition of tumors is leading toward new therapeutic strategies for cancer treatment. Expected final online publication date for the Annual Review of Immunology Volume 33 is March 21, 2015. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Immunology 01/2015; DOI:10.1146/annurev-immunol-032414-112043 · 41.39 Impact Factor
  • Thomas F. Gajewski, Leticia Corrales
    [Show abstract] [Hide abstract]
    ABSTRACT: Although type I IFNs were initially described based on their anti-viral properties, it was quickly realized that these cytokines had anti-proliferative and anti-cancer activities. These observations ultimately led to the clinical development and utility of IFN-α2b for the treatment of patients with melanoma, renal cell carcinoma, and chronic myelogenous leukemia, among others. However, the mechanism of action of type I IFNs in vivo was never fully elucidated, and the pleiotropic effects of IFNs on multiple cell types had made it challenging to decipher. Advancement of genetically engineered mouse models has provided new tools for interrogating these mechanisms. Recent evidence has indicated that spontaneous innate immune sensing of cancers that leads to adaptive immune responses is dependent on host type I IFN production and signaling. The major innate immune receptor pathway that leads to type I IFN production in response to a growing tumor appears to be the STING pathway of cytosolic DNA sensing. STING agonists drive type I IFN production and are impressively therapeutic in mouse tumor models. Targeting low doses of type I IFNs to the tumor microenvironment also promotes anti-tumor activity via host adaptive immunity that is T cell-dependent. However, high doses of intratumoral type I IFNs largely function via an anti-angiogenic effect. Understanding these mechanistic details should enable improved clinical manipulation of the type I IFN system in cancer.
    Cytokine & Growth Factor Reviews 01/2015; DOI:10.1016/j.cytogfr.2015.01.001 · 6.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKROUND In patients with metastatic melanoma and KIT amplifications and/or mutations, therapy with imatinib mesylate may prolong survival. 18F-labeled 2-fluoro-2-deoxy-D-glucose (18F-FDG) PET/CT may be used to assess metabolic response. We investigated associations of metabolic response, mutational status, progression-free survival and overall survival in this population. METHODS: Baseline and 4-week follow-up 18F-FDG-PET/CT were evaluated in 17 patients with metastatic melanoma and KIT amplifications and/or mutations treated with imatinib in a multicenter phase II clinical trial. The maximum standardized uptake values (SUVmax) were measured in up to 10 lesions on each scan. Metabolic response was classified using modified EORTC criteria. Each patient had a diagnostic CT or MR at baseline, after 6 weeks of therapy and then at intervals of 2 months and anatomic response was classified using RECIST 1.0. Median follow-up was 9.8 months. RESULTS: Partial metabolic response (PMR), stable metabolic disease (SMD) and progressive metabolic disease (PMD) was seen in 5 (29%), 5 (29%), and 7 (41%) patients respectively. Five patients (29%) had a KIT mutation in exon 11, four of whom (80%) had PMR while 1 (20%) had SMD. Twelve patients (71%) did not have a KIT mutation in exon 11, and only 1 (8%) had PMR, 4 (33%) had SMD and 7 (58%) had PMD. There was agreement of metabolic and anatomic classification in 12 of 17 patients (71%). Four of 17 patients (24%) had PR on both metabolic and anatomic imaging and all had a KIT mutation in exon 11. Survival of patients with PMD was lower than with SMD or PMR. CONCLUSIONS: Metabolic response by 18F-FDG-PET/CT is associated with mutational status in metastatic melanoma patients treated with imatinib. 18F-FDG-PET/CT may be a predictor of outcome, although a larger study is needed to verify this.
    Cancer Imaging 11/2014; 14(1):30. DOI:10.1186/s40644-014-0030-0 · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spontaneous T cell responses against tumors occur frequently and have prognostic value in patients. The mechanism of innate immune sensing of immunogenic tumors leading to adaptive T cell responses remains undefined, although type I interferons (IFNs) are implicated in this process. We found that spontaneous CD8(+) T cell priming against tumors was defective in mice lacking stimulator of interferon genes complex (STING), but not other innate signaling pathways, suggesting involvement of a cytosolic DNA sensing pathway. In vitro, IFN-? production and dendritic cell activation were triggered by tumor-cell-derived DNA, via cyclic-GMP-AMP synthase (cGAS), STING, and interferon regulatory factor 3 (IRF3). In the tumor microenvironment in vivo, tumor cell DNA was detected within host antigen-presenting cells, which correlated with STING pathway activation and IFN-? production. Our results demonstrate that a major mechanism for innate immune sensing of cancer occurs via the host STING pathway, with major implications for cancer immunotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.
    Immunity 11/2014; 41(5):830-842. DOI:10.1016/j.immuni.2014.10.017 · 19.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ionizing radiation-mediated tumor regression depends on type I interferon (IFN) and the adaptive immune response, but several pathways control I IFN induction. Here, we demonstrate that adaptor protein STING, but not MyD88, is required for type I IFN-dependent antitumor effects of radiation. In dendritic cells (DCs), STING was required for IFN-? induction in response to irradiated-tumor cells. The cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) mediated sensing of irradiated-tumor cells in DCs. Moreover, STING was essential for radiation-induced adaptive immune responses, which relied on type I IFN signaling on DCs. Exogenous IFN-? treatment rescued the cross-priming by cGAS or STING-deficient DCs. Accordingly, activation of STING by a second messenger cGAMP administration enhanced antitumor immunity induced by radiation. Thus radiation-mediated antitumor immunity in immunogenic tumors requires a functional cytosolic DNA-sensing pathway and suggests that cGAMP treatment might provide a new strategy to improve radiotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.
    Immunity 11/2014; 41:843. DOI:10.1016/j.immuni.2014.10.019 · 19.75 Impact Factor
  • Source
    Sujit V Janardhan, Reinhard Marks, Thomas F Gajewski
    [Show abstract] [Hide abstract]
    ABSTRACT: Constitutive Ras signaling has been shown to augment IL-2 production, reverse anergy, and functionally replace many aspects of CD28 co-stimulation in CD4+ T cells. These data raise the possibility that introduction of active Ras into primary T cells might result in improved functionality in pathologic situations of T cell dysfunction, such as cancer or chronic viral infection. To test the biologic effects of active Ras in primary T cells, CD4+ T cells from Coxsackie-Adenovirus Receptor Transgenic mice were transduced with an adenovirus encoding active Ras. As expected, active Ras augmented IL-2 production in naive CD4+ T cells. However, when cells were cultured for 4 days under conditions to promote effector cell differentiation, active Ras inhibited the ability of CD4+ T cells to acquire a Th1 or Th2 effector cytokine profile. This differentiation defect was not due to deficient STAT4 or STAT6 activation by IL-12 or IL-4, respectively, nor was it associated with deficient induction of T-bet and GATA-3 expression. Impaired effector cytokine production in active Ras-transduced cells was associated with deficient demethylation of the IL-4 gene locus. Our results indicate that, despite augmenting acute activation of naïve T cells, constitutive Ras signaling inhibits the ability of CD4+ T cells to properly differentiate into Th1/Th2 effector cytokine-producing cells, in part by interfering with epigenetic modification of effector gene loci. Alternative strategies to potentiate Ras pathway signaling in T cells in a more regulated fashion should be considered as a therapeutic approach to improve immune responses in vivo.
    PLoS ONE 11/2014; 9(11):e112831. DOI:10.1371/journal.pone.0112831 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fourth ¿Melanoma Bridge Meeting¿ took place in Naples, December 5 to 8th, 2013. The four topics discussed at this meeting were: Diagnosis and New Procedures, Molecular Advances and Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers.Until recently systemic therapy for metastatic melanoma patients was ineffective, but recent research in tumor biology and immunology has led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS). New therapies, such as mitogen-activated protein kinase (MAPK) pathway inhibitors, like BRAF and MEK inhibitors, as well as other signaling pathways inhibitors, are being tested in metastatic melanoma either as monotherapy or in combination, and have yielded promising results.Improved survival rates have also been observed with immune therapy for patients with metastatic melanoma. Immune-modulating antibodies came to the forefront with anti-CTLA-4, programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) pathway blocking antibodies that result in durable responses in a subset of melanoma patients. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors and other approaches such as adoptive cell transfer demonstrate clinical benefit in melanoma as well.This meeting¿s specific focus was on advances in targeted therapy and immunotherapy. Both combination targeted therapy approaches and different immunotherapies were discussed. Similarly to the previous meetings, the importance of biomarkers for clinical application as markers for diagnosis, prognosis and prediction of treatment response was an integral part of the meeting. Significant consideration was given to issues surrounding the development of novel therapeutic targets as further study of patterns of resistance to both immunologic and targeted drugs are paramount to future drug development to guide existing and future therapies. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into contemporary clinical management of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma.
    Journal of Translational Medicine 10/2014; 12(1):277. DOI:10.1186/s12967-014-0277-z · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endogenous type I IFN production after innate immune recognition of tumor cells is critical for generating natural adaptive immune responses against tumors in vivo. We recently have reported that targeting low doses of IFN-β to the tumor microenvironment using tumor-specific mAbs can facilitate antitumor immunity, which could be augmented further with PD-L1/PD-1 blockade. However, sustained high doses of type I IFNs in the tumor microenvironment, which are potently therapeutic alone, may function through distinct mechanisms. In the current report, we demonstrate that high-dose intratumoral type I IFNs indeed exerted a profound therapeutic effect in the murine B16 model, which unexpectedly did not increase T cell responses. Moreover, bone marrow chimeras revealed a role for type I IFN signaling on nonhematopoietic cells, and most of the therapeutic effect was retained in mice deficient in T, B, and NK cells. Rather, the tumor vasculature was ablated with high-dose intratumoral IFN-β, and conditional deletion of IFN-α/βR in Tie2-positive vascular endothelial cells eliminated most of the antitumor activity. Therefore, the major component of the antitumor activity of sustained high doses of type I IFNs occurs through a direct antiangiogenic effect. Our data help resolve conditions under which distinct antitumor mechanisms of type I IFNs are operational in vivo.
    The Journal of Immunology 09/2014; 193(8). DOI:10.4049/jimmunol.1401109 · 5.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND Aberrant Notch activation confers a proliferative advantage to many human tumors, including melanoma. This phase 2 trial assessed the antitumor activity of RO4929097, a gamma-secretase inhibitor of Notch signaling, with respect to the progression-free and overall survival of patients with advanced melanoma.METHODS Chemotherapy-naive patients with metastatic melanoma of cutaneous or unknown origin were treated orally with RO4929097 at a dose of 20 mg daily 3 consecutive days per week. A 2-step accrual design was used with an interim analysis of the first 32 patients and with continuation of enrollment if 4 or more of the 32 patients responded.RESULTSThirty-six patients from 23 institutions were enrolled; 32 patients were evaluable. RO4929097 was well tolerated, and most toxicities were grade 1 or 2. The most common toxicities were nausea (53%), fatigue (41%), and anemia (22%). There was 1 confirmed partial response lasting 7 months, and there were 8 patients with stable disease lasting at least through week 12, with 1 of these continuing for 31 months. The 6-month progression-free survival rate was 9% (95% confidence interval [CI], 2%-22%), and the 1-year overall survival rate was 50% (95% CI, 32%-66%). Peripheral blood T-cell assays showed no significant inhibition of the production of interleukin-2, a surrogate pharmacodynamic marker of Notch inhibition, and this suggested that the drug levels were insufficient to achieve Notch target inhibition.CONCLUSIONSRO4929097 showed minimal clinical activity against metastatic melanoma in this phase 2 trial, possibly because of inadequate exposure to therapeutic drug levels. Although Notch inhibition remains a compelling target in melanoma, the results do not support further investigation of RO4929097 with this dose and schedule. Cancer 2014. © 2014 American Cancer Society.
    Cancer 09/2014; 121(3). DOI:10.1002/cncr.29055 · 5.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Addition of a MEK inhibitor to a BRAF inhibitor enhances tumour growth inhibition, delays acquired resistance, and abrogates paradoxical activation of the MAPK pathway in preclinical models of BRAF-mutated melanoma. We assessed the safety and efficacy of combined BRAF inhibition with vemurafenib and MEK inhibition with cobimetinib in patients with advanced BRAF-mutated melanoma. Methods We undertook a phase 1b study in patients with advanced BRAFV600-mutated melanoma. We included individuals who had either recently progressed on vemurafenib or never received a BRAF inhibitor. In the dose-escalation phase of our study, patients received vemurafenib 720 mg or 960 mg twice a day continuously and cobimetinib 60 mg, 80 mg, or 100 mg once a day for either 14 days on and 14 days off (14/14), 21 days on and 7 days off (21/7), or continuously (28/0). The primary endpoint was safety of the drug combination and to identify dose-limiting toxic effects and the maximum tolerated dose. Efficacy was a key secondary endpoint. All patients treated with vemurafenib and cobimetinib were included in safety and efficacy analyses (intention-to-treat). The study completed accrual and all analyses are final. This study is registered with ClinicalTrials.gov, number NCT01271803. Findings 129 patients were treated at ten dosing regimens combining vemurafenib and cobimetinib: 66 had recently progressed on vemurafenib and 63 had never received a BRAF inhibitor. Dose-limiting toxic effects arose in four patients. One patient on a schedule of vemurafenib 960 mg twice a day and cobimetinib 80 mg once a day 14/14 had grade 3 fatigue for more than 7 days; one patient on a schedule of vemurafenib 960 mg twice a day and cobimetinib 60 mg once a day 21/7 had a grade 3 prolongation of QTc; and two patients on a schedule of vemurafenib 960 mg twice a day and cobimetinib 60 mg 28/0 had dose-limiting toxic effects—one developed grade 3 stomatitis and fatigue and one developed arthralgia and myalgia. The maximum tolerated dose was established as vemurafenib 960 mg twice a day in combination with cobimetinib 60 mg 21/7. Across all dosing regimens, the most common adverse events were diarrhoea (83 patients, 64%), non-acneiform rash (77 patients, 60%), liver enzyme abnormalities (64 patients, 50%), fatigue (62 patients, 48%), nausea (58 patients, 45%), and photosensitivity (52 patients, 40%). Most adverse events were mild-to-moderate in severity. The most common grade 3 or 4 adverse events were cutaneous squamous-cell carcinoma (12 patients, 9%; all grade 3), raised amounts of alkaline phosphatase (11 patients, 9%]), and anaemia (nine patients, 7%). Confirmed objective responses were recorded in ten (15%) of 66 patients who had recently progressed on vemurafenib, with a median progression-free survival of 2·8 months (95% CI 2·6–3·4). Confirmed objective responses were noted in 55 (87%) of 63 patients who had never received a BRAF inhibitor, including six (10%) who had a complete response; median progression-free survival was 13·7 months (95% CI 10·1–17·5). Interpretation The combination of vemurafenib and cobimetinib was safe and tolerable when administered at the respective maximum tolerated doses. The combination has promising antitumour activity and further clinical development is warranted in patients with advanced BRAFV600-mutated melanoma, particularly in those who have never received a BRAF inhibitor; confirmatory clinical testing is ongoing. Funding F Hoffmann-La Roche/Genentech.
    The Lancet Oncology 08/2014; 15(9). DOI:10.1016/S1470-2045(14)70301-8 · 24.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Uveal melanoma is characterized by mutations in GNAQ and GNA11, resulting in mitogen-activated protein kinase pathway activation.
    JAMA The Journal of the American Medical Association 06/2014; 311(23):2397-405. DOI:10.1001/jama.2014.6096 · 30.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antibodies (Abs) that preferentially target oncogenic receptors have been increasingly used for cancer therapy, but tumors often acquire intrinsic Ab resistance after prolonged and costly treatment. Herein we armed the Ab with IFNβ and observed that it is more potent than the first generation of Ab for controlling Ab-resistant tumors. This strategy controls Ab resistance by rebridging suppressed innate and adaptive immunity in the tumor microenvironment. Mechanistically, Ab-IFNβ therapy primarily and directly targets intratumoral dendritic cells, which reactivate CTL by increasing antigen cross-presentation within the tumor microenvironment. Additionally, blocking PD-L1, which is induced by Ab-IFNβ treatment, overcomes treatment-acquired resistance and completely eradicates established tumors. This study establishes a next-generation Ab-based immunotherapy that targets and eradicates established Ab-resistant tumors.
    Cancer cell 01/2014; 25(1):37-48. DOI:10.1016/j.ccr.2013.12.004 · 25.29 Impact Factor
  • Journal of Translational Medicine 01/2014; 12(Suppl 1):O7. DOI:10.1186/1479-5876-12-S1-O7 · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Blockade of immune inhibitory pathways is emerging as an important therapeutic modality for the treatment of cancer. Single agent treatments have partial anti-tumor activity in preclinical models and in human cancer patients. Inasmuch as the tumor microenvironment shows evidence of multiple immune inhibitory mechanisms present concurrently, it has been reasoned that combination therapies may be required for optimal therapeutic effect. To test this notion, we utilized permutations of anti-CTLA-4 mAb, anti-PD-L1 mAb, and/or the IDO inhibitor INCB23843 in the murine B16.SIY melanoma model. All three combinations showed markedly improved tumor control over single treatments, with many mice achieving complete tumor rejection. This effect was seen in the absence of vaccination or adoptive T cell therapy. The mechanism of synergy was investigated to examine the priming versus effector phase of the anti-tumor immune response. Only a minimal increase in priming of anti-tumor T cells was observed at early time points in the tumor-draining lymph nodes (TdLN). In contrast, as early as three days after therapy initiation, a marked increase in the capacity of tumor-infiltrating CD8(+) T cells to produce IL-2 and to proliferate was found in all groups treated with the effective combinations. Treatment of mice with FTY720 to block new T cell trafficking from secondary lymphoid structures still enabled restoration of IL-2 production and proliferation by intratumoral T cells, and also retained most of the tumor growth control. Our data suggest that the therapeutic effect of these immunotherapies was mainly mediated through direct reactivation of T cells in situ. These three combinations are attractive to pursue clinically, and the ability of intratumoral CD8(+) T cells to produce IL-2 and to proliferate could be an important biomarker to integrate into clinical studies.
    01/2014; 2:3. DOI:10.1186/2051-1426-2-3
  • Molecular Immunology 12/2013; 56(4):530. DOI:10.1016/j.molimm.2013.05.229 · 3.00 Impact Factor
  • Source
    Thomas F Gajewski, Hans Schreiber, Yang-Xin Fu
    [Show abstract] [Hide abstract]
    ABSTRACT: Most tumor cells express antigens that can mediate recognition by host CD8(+) T cells. Cancers that are detected clinically must have evaded antitumor immune responses to grow progressively. Recent work has suggested two broad categories of tumor escape based on cellular and molecular characteristics of the tumor microenvironment. One major subset shows a T cell-inflamed phenotype consisting of infiltrating T cells, a broad chemokine profile and a type I interferon signature indicative of innate immune activation. These tumors appear to resist immune attack through the dominant inhibitory effects of immune system-suppressive pathways. The other major phenotype lacks this T cell-inflamed phenotype and appears to resist immune attack through immune system exclusion or ignorance. These two major phenotypes of tumor microenvironment may require distinct immunotherapeutic interventions for maximal therapeutic effect.
    Nature Immunology 10/2013; 14(10):1014-22. DOI:10.1038/ni.2703 · 24.97 Impact Factor
  • Stefani Spranger, Thomas Gajewski
    [Show abstract] [Hide abstract]
    ABSTRACT: An effective anti-tumor immune response requires the coordinated action of the innate and adaptive phases of the immune system. Critical processes include the activation of dendritic cells to present antigens, produce cytokines including type I interferons, and express multiple costimulatory ligands; induction of a productive T cell response within lymph nodes; migration of activated T cells to the tumor microenvironment in response to chemokines and homing receptor expression; and having effector T cells gain access to antigen-expressing tumor cells and maintain sufficient functionality to destroy them. However, tumors can become adept at escaping the immune response, developing multiple mechanisms to disrupt key processes. In general, tumors can be assigned into two different, major groups depending on whether the tumor there is an 'inflamed' or 'non-inflamed' tumor microenvironment. Improvements in our understanding of the interactions between the immune system and cancer have resulted in the development of various strategies to improve the immune-mediated control of tumors in both sub-groups. Categories of major immunotherapeutic intervention include methods to increase the frequency of tumor antigen-specific effector T cells in the circulation, strategies to block or uncouple a range of immune suppressive mechanisms within the tumor microenvironment, and tactics to induce de novo immune inflammation within the tumor microenvironment. The latter may be particularly important for eliciting immune recognition of non-inflamed tumor phenotypes. The premise put forth in this review is that synergistic therapeutic effects in vivo may be derived from combination therapies taken from distinct "bins" based on these mechanisms of action. Early data in both preclinical and some clinical studies provide support for this model. We also suggest that optimal application of these combinations may be aided by appropriate patient selection based on predictive biomarkers.
    09/2013; 1:16. DOI:10.1186/2051-1426-1-16
    This article is viewable in ResearchGate's enriched format

Publication Stats

9k Citations
1,435.35 Total Impact Points

Institutions

  • 1988–2015
    • University of Chicago
      • • Section of Hematology/Oncology
      • • Committee on Immunology
      • • Department of Pathology
      • • Department of Medicine
      Chicago, Illinois, United States
  • 1988–2014
    • University of Illinois at Chicago
      • • Section of Hematology and Oncology
      • • Department of Pathology (Chicago)
      Chicago, Illinois, United States
  • 2013
    • Sidra Medical and Research Cente
      Ad Dawḩah, Ad Dawḩah, Qatar
    • American Cancer Society
      Atlanta, Georgia, United States
    • Institut de Cancérologie Gustave Roussy
      Île-de-France, France
  • 1995–2012
    • The University of Chicago Medical Center
      • • Section of Hematology/Oncology
      • • Department of Pathology
      • • Department of Medicine
      Chicago, Illinois, United States
    • Ludwig Institute for Cancer Research
      La Jolla, California, United States
  • 2009
    • University of Pittsburgh
      Pittsburgh, Pennsylvania, United States
  • 1997
    • University of Illinois, Urbana-Champaign
      • Department of Biochemistry
      Urbana, IL, United States
  • 1996
    • Ludwig Institute for Cancer Research Ltd Belgium
      Bruxelles, Brussels Capital Region, Belgium
  • 1995–1996
    • Catholic University of Louvain
      • Duve Institute
      Walloon Region, Belgium