Dan Lv

State Key Laboratory of Medical Genetics of China, Ch’ang-sha-shih, Hunan, China

Are you Dan Lv?

Claim your profile

Publications (3)44.93 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acne inversa (AI), also known as hidradenitis suppurativa, is a chronic, recurrent, inflammatory disease of hair follicles that often runs in families. We studied six Chinese families with features of AI as well as additional skin lesions on back, face, nape, and waist and found independent loss-of-function mutations in PSENEN, PSEN1, or NCSTN, the genes encoding essential components of the γ-secretase multiprotein complex. Our results identify the γ-secretase component genes as the culprits for a subset of familial AI, implicate the γ-secretase-Notch pathway in the molecular pathogenesis of AI, and demonstrate that familial AI can be an allelic disorder of early-onset familial Alzheimer's disease.
    Science 10/2010; 330(6007):1065. · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Congenital generalized hypertrichosis terminalis (CGHT) is a rare condition characterized by universal excessive growth of pigmented terminal hairs and often accompanied with gingival hyperplasia. In the present study, we describe three Han Chinese families with autosomal-dominant CGHT and a sporadic case with extreme CGHT and gingival hyperplasia. We first did a genome-wide linkage scan in a large four-generation family. Our parametric multipoint linkage analysis revealed a genetic locus for CGHT on chromosome 17q24.2-q24.3. Further two-point linkage and haplotyping with microsatellite markers from the same chromosome region confirmed the genetic mapping and showed in all the families a microdeletion within the critical region that was present in all affected individuals but not in unaffected family members. We then carried out copy-number analysis with the Affymetrix Genome-Wide Human SNP Array 6.0 and detected genomic microdeletions of different sizes and with different breakpoints in the three families. We validated these microdeletions by real-time quantitative PCR and confirmed their perfect cosegregation with the disease phenotype in the three families. In the sporadic case, however, we found a de novo microduplication. Two-color interphase FISH analysis demonstrated that the duplication was inverted. These copy-number variations (CNVs) shared a common genomic region in which CNV is not reported in the public database and was not detected in our 434 unrelated Han Chinese normal controls. Thus, pathogenic copy-number mutations on 17q24.2-q24.3 are responsible for CGHT with or without gingival hyperplasia. Our work identifies CGHT as a genomic disorder.
    The American Journal of Human Genetics 07/2009; 84(6):807-13. · 11.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in ROR2, encoding the receptor tyrosine kinase-like orphan receptor 2, cause two distinct skeletal diseases: autosomal dominant brachydactyly type B1 (BDB1) and autosomal recessive Robinow syndrome. In a large Chinese family with a limb phenotype, consisting of atypical BDB1 and cutaneous syndactyly of varying degrees, we performed a two-point linkage analysis using microsatellite markers on 2q33-q37 and 9q22.31, and found a significant linkage to the ROR2 locus. We identified a novel single-base deletion in ROR2, c.2243delC (p.W749fsX24), and confirmed its segregation with the limb phenotype in the family. This deletion is predicted to produce a truncated ROR2 protein with an additional C-terminal polypeptide of 24 amino-acid residues. To the best of our knowledge, the deletion represents the second ROR2 mutation associated with a BDB1-syndactyly phenotype.
    Journal of Human Genetics 06/2009; 54(7):422-5. · 2.53 Impact Factor

Publication Stats

88 Citations
44.93 Total Impact Points


  • 2010
    • State Key Laboratory of Medical Genetics of China
      Ch’ang-sha-shih, Hunan, China
    • Peking Union Medical College Hospital
      Peping, Beijing, China