Raul Alba

Cardiff University, Cardiff, Wales, United Kingdom

Are you Raul Alba?

Claim your profile

Publications (15)71.77 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Adenoviral vectors hold immense potential for a wide variety of gene therapy based applications; however, their efficacy and toxicity is dictated by "off target" interactions that preclude cell specific targeting to sites of disease. A number of "off target" interactions have been described in the literature that occur between the three major capsid proteins (hexon, penton, and fiber) and components of the circulatory system, including cells such as erythrocytes, white blood cells, and platelets, as well as circulatory proteins including complement proteins, coagulation factors, von Willebrand Factor, p-selectin as well as neutralizing antibodies. Thus, to improve efficacious targeting to sites of disease and limit nonspecific uptake of virus to non-target tissues, specifically the liver and the spleen, it is necessary to develop suitable strategies for genetically modifying the capsid proteins to preclude these interactions. To this end we have developed versatile systems based on homologous recombination for modification of each of the major capsid proteins, which are described herein.
    Methods in molecular biology (Clifton, N.J.) 01/2014; 1089:45-59. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular disorders, including coronary artery bypass graft failure and in-stent restenosis remain significant opportunities for the advancement of novel therapeutics that target neointimal hyperplasia, a characteristic of both pathologies. Gene therapy may provide a successful approach to improve the clinical outcome of these conditions, but would benefit from the development of more efficient vectors for vascular gene delivery. The aim of this study was to assess whether a novel genetically engineered Adenovirus could be utilised to produce enhanced levels of vascular gene expression. Vascular transduction capacity was assessed in primary human saphenous vein smooth muscle and endothelial cells using vectors expressing the LacZ reporter gene. The therapeutic capacity of the vectors was compared by measuring smooth muscle cell metabolic activity and migration following infection with vectors that over-express the candidate therapeutic gene tissue inhibitor of matrix metalloproteinase-3 (TIMP-3). Compared to Adenovirus serotype 5 (Ad5), the novel vector Ad5T*F35++ demonstrated improved binding and transduction of human vascular cells. Ad5T*F35++ mediated expression of TIMP-3 reduced smooth muscle cell metabolic activity and migration in vitro. We also demonstrated that in human serum samples pre-existing neutralising antibodies to Ad5T*F35++ were less prevalent than Ad5 neutralising antibodies. We have developed a novel vector with improved vascular transduction and improved resistance to human serum neutralisation. This may provide a novel vector platform for human vascular gene transfer.
    Journal of Cardiothoracic Surgery 08/2013; 8(1):183. · 1.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that injury-induced neointima formation was rescued by adenoviral-Nogo-B gene delivery. Integrase-competent lentiviral vectors (ICLV) are efficient at gene delivery to vascular cells but present a risk of insertional mutagenesis. Conversely, integrase-deficient lentiviral vectors (IDLV) offer additional benefit through reduced mutagenesis risk, but this has not been evaluated in the context of vascular gene transfer. Here, we have investigated the performance and genetic safety of both counterparts in primary human vascular smooth muscle cells (VSMC), and compared gene transfer efficiency and assessed the genotoxic potential of ICLVs and IDLVs based on their integration frequency and insertional profile in the human genome. Expression of eGFP mediated by IDLVs (IDLV-eGFP) demonstrated efficient transgene expression in VSMCs. IDLV gene transfer of Nogo-B mediated efficient over-expression of Nogo-B in VSMCs leading to phenotypic effects on VSMC migration and proliferation, similar to its ICLV version and unlike its eGFP control and un-infected VSMCs. Large-scale integration site analyses in VSMCs indicated that IDLV-mediated gene transfer gave rise to a very low frequency of genomic integration compared to ICLVs revealing a close to random genomic distribution in VSMCs. This study demonstrates for the first time the potential of IDLVs for safe and efficient vascular gene transfer.
    Human gene therapy 08/2012; · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of adenovirus serotype 5 (Ad5) vectors in the clinical setting is severely hampered by the profound liver tropism observed after intravascular delivery coupled with the pronounced inflammatory and innate immune response elicited by these vectors. Liver transduction by circulating Ad5 virions is mediated by a high-affinity interaction between the capsid hexon protein and blood coagulation factor X (FX), whilst penton-α(v)integrin interactions are thought to contribute to the induction of anti-Ad5 inflammatory and innate immune responses. To overcome these limitations, we sought to develop and characterise for the first time novel Ad5 vectors possessing mutations ablating both hexon:FX and penton:integrin interactions. As expected, intravascular administration of the FX binding-ablated Ad5HVR5*HVR7*E451Q vector (AdT*) resulted in significantly reduced liver transduction in vivo compared to Ad5. In macrophage-depleted mice, increased spleen uptake of AdT* was accompanied by an elevation in the levels of several inflammatory mediators. However ablation of the penton RGD motif in the AdT* vector background (AdT*RGE) resulted in a significant 5-fold reduction in spleen uptake and attenuated the antiviral inflammatory response. A reduction in spleen uptake and inflammatory activation was also observed in animals after intravascular administration of Ad5RGE compared to the parental Ad5 vector, with reduced co-localisation of the viral beta-galactosidase transgene with MAdCAM-1+ sinus-lining endothelial cells. Our detailed assessment of these novel adenoviruses indicates that penton base RGE mutation in combination with FX binding-ablation may be a viable strategy to attenuate the undesired liver uptake and pro-inflammatory responses to Ad5 vectors after intravascular delivery.
    Journal of Controlled Release 05/2012; · 7.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Serotonin is produced by pulmonary arterial endothelial cells (PAEC) via tryptophan hydroxylase-1 (Tph1). Pathologically, serotonin acts on underlying pulmonary arterial cells, contributing to vascular remodeling associated with pulmonary arterial hypertension (PAH). The effects of hypoxia on PAEC-Tph1 activity are unknown. We investigated the potential of a gene therapy approach to PAH using selective inhibition of PAEC-Tph1 in vivo in a hypoxic model of PAH. We exposed cultured bovine pulmonary arterial smooth muscle cells (bPASMCs) to conditioned media from human PAECs (hPAECs) before and after hypoxic exposure. Serotonin levels were increased in hypoxic PAEC media. Conditioned media evoked bPASMC proliferation, which was greater with hypoxic PAEC media, via a serotonin-dependent mechanism. In vivo, adenoviral vectors targeted to PAECs (utilizing bispecific antibody to angiotensin-converting enzyme (ACE) as the selective targeting system) were used to deliver small hairpin Tph1 RNA sequences in rats. Hypoxic rats developed PAH and increased lung Tph1. PAEC-Tph1 expression and development of PAH were attenuated by our PAEC-Tph1 gene knockdown strategy. These results demonstrate that hypoxia induces Tph1 activity and selective knockdown of PAEC-Tph1 attenuates hypoxia-induced PAH in rats. Further investigation of pulmonary endothelial-specific Tph1 inhibition via gene interventions is warranted.
    Molecular Therapy 04/2012; 20(8):1516-28. · 6.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adenoviruses have many attributes, which have made them one of the most widely investigated vectors for gene therapy applications. These include ease of genetic manipulation to produce replication-deficient vectors, ability to readily generate high titer stocks, efficiency of gene delivery into many cell types, and ability to encode large genetic inserts. Recent advances in adenoviral vector engineering have included the ability to genetically manipulate the tropism of the vector by engineering of the major capsid proteins, particularly fiber and hexon. Furthermore, simple replication-deficient adenoviral vectors deleted for expression of a single gene have been complemented by the development of systems in which the majority of adenoviral genes are deleted, generating sophisticated Ad vectors which can mediate sustained transgene expression following a single delivery. This chapter outlines methods for developing simple transgene over expressing Ad vectors and detailed strategies to engineer mutations into the major capsid proteins.
    Methods in molecular biology (Clifton, N.J.) 01/2012; 891:55-84. · 1.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Coagulation factor X (FX)-binding ablated adenovirus type 5 (Ad5) vectors have been genetically engineered to ablate the interaction with FX, resulting in substantially reduced hepatocyte transduction following intravenous administration in rodents. Here, we quantify viral genomes and gene transfer mediated by Ad5 and FX-binding-ablated Ad5 vectors in non-human primates. Ad5 vectors accumulated in and mediated gene transfer predominantly to the liver, whereas FX-binding-ablated vectors primarily targeted the spleen but showed negligible liver gene transfer. In addition, we show that Ad5 binding to hepatocytes may be due to the presence of heparan sulfate proteoglycans (HSPGs) on the cell membrane. Therefore, the Ad5-FX-HSPG pathway mediating liver gene transfer in rodents is also the mechanism underlying Ad5 hepatocyte transduction in Microcebus murinus.
    Gene therapy 06/2011; 19(1):109-13. · 4.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously described a new family of mutant adenoviruses carrying different combinations of attB/attP sequences from bacteriophage PhiC31 flanking the Ad5 packaging domain. These novel helper viruses have a significantly delayed viral life cycle and a severe packaging impairment, regardless of the presence of PhiC31 recombinase. Their infectious viral titers are significantly lower (100-1000 fold) than those of control adenovirus at 36 hours post-infection, but allow for efficient packaging of helper-dependent adenovirus. In the present work, we have analyzed which steps of the adenovirus life cycle are altered in attB-helper adenoviruses and investigated whether these viruses can provide the necessary viral proteins in trans. The entry of attB-adenoviral genomes into the cell nucleus early at early timepoints post-infection was not impaired and viral protein expression levels were found to be similar to those of control adenovirus. However, electron microscopy and capsid protein composition analyses revealed that attB-adenoviruses remain at an intermediate state of maturation 36 hours post-infection in comparison to control adenovirus which were fully mature and infective at this time point. Therefore, an additional 20-24 hours were found to be required for the appearance of mature attB-adenovirus. Interestingly, attB-adenovirus assembly and infectivity was restored by inserting a second packaging signal close to the right-end ITR, thus discarding the possibility that the attB-adenovirus genome was retained in a nuclear compartment deleterious for virus assembly. The present study may have substantive implications for helper-dependent adenovirus technology since helper attB-adenovirus allows for preferential packaging of helper-dependent adenovirus genomes.
    PLoS ONE 05/2011; 6(5):e19564. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A major limitation for adenoviral transduction in vivo is the profound liver tropism of adenovirus type 5 (Ad5). Recently, we demonstrated that coagulation factor X (FX) binds to Ad5-hexon protein at high affinity to mediate hepatocyte transduction after intravascular delivery. We developed novel genetically FX-binding ablated Ad5 vectors with lower liver transduction. Here, we demonstrate that FX-binding ablated Ad5 predominantly localize to the liver and spleen 1 hour after injection; however, they had highly reduced liver transduction in both control and macrophage-depleted mice compared with Ad5. At high doses in macrophage-depleted mice, FX-binding ablated vectors transduced the spleen more efficiently than Ad5. Immunohistochemical studies demonstrated transgene colocalization with CD11c(+), ER-TR7(+), and MAdCAM-1(+) cells in the splenic marginal zone. Systemic inflammatory profiles were broadly similar between FX-binding ablated Ad5 and Ad5 at low and intermediate doses, although higher levels of several inflammatory proteins were observed at the highest dose of FX-binding ablated Ad5. Subsequently, we generated a FX-binding ablated virus containing a high affinity Ad35 fiber that mediated a significant improvement in lung/liver ratio in macrophage-depleted CD46(+) mice compared with controls. Therefore, this study documents the biodistribution and reports the retargeting capacity of FX binding-ablated Ad5 vectors in vitro and in vivo.
    Blood 10/2010; 116(15):2656-64. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Achieving high efficiency, targeted gene delivery with adenoviral vectors is a long-standing goal in the field of clinical gene therapy. To achieve this, platform vectors must combine efficient retargeting strategies with detargeting modifications to ablate native receptor binding (i.e. CAR/integrins/heparan sulfate proteoglycans) and "bridging" interactions. "Bridging" interactions refer to coagulation factor binding, namely coagulation factor X (FX), which bridges hepatocyte transduction in vivo through engagement with surface expressed heparan sulfate proteoglycans (HSPGs). These interactions can contribute to the off-target sequestration of Ad5 in the liver and its characteristic dose-limiting hepatotoxicity, thereby significantly limiting the in vivo targeting efficiency and clinical potential of Ad5-based therapeutics. To date, various approaches to retargeting adenoviruses (Ad) have been described. These include genetic modification strategies to incorporate peptide ligands (within fiber knob domain, fiber shaft, penton base, pIX or hexon), pseudotyping of capsid proteins to include whole fiber substitutions or fiber knob chimeras, pseudotyping with non-human Ad species or with capsid proteins derived from other viral families, hexon hypervariable region (HVR) substitutions and adapter-based conjugation/crosslinking of scFv, growth factors or monoclonal antibodies directed against surface-expressed target antigens. In order to maximize retargeting, strategies which permit detargeting from undesirable interactions between the Ad capsid and components of the circulatory system (e.g. coagulation factors, erythrocytes, pre-existing neutralizing antibodies), can be employed simultaneously. Detargeting can be achieved by genetic ablation of native receptor-binding determinants, ablation of "bridging interactions" such as those which occur between the hexon of Ad5 and coagulation factor X (FX), or alternatively, through the use of polymer-coated "stealth" vectors which avoid these interactions. Simultaneous retargeting and detargeting can be achieved by combining multiple genetic and/or chemical modifications.
    Viruses 10/2010; 2(10):2290-355. · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have demonstrated the importance of coagulation factor X (FX) in adenovirus (Ad) serotype 5-mediated liver transduction in vivo. FX binds to the adenovirus hexon hypervariable regions (HVRs). Here, we perform a systematic analysis of FX binding to Ad5 HVRs 5 and 7, identifying domains and amino acids critical for this interaction. We constructed a model of the Ad5-FX interaction using crystallographic and cryo-electron microscopic data to identify contact points. Exchanging Ad5 HVR5 or HVR7 from Ad5 to Ad26 (which does not bind FX) diminished FX binding as analyzed by surface plasmon resonance, gene delivery in vitro, and liver transduction in vivo. Exchanging Ad5-HVR5 for Ad26-HVR5 produced deficient virus maturation. Importantly, defined mutagenesis of just 2 amino acids in Ad5-HVR5 circumvented this and was sufficient to block liver gene transfer. In addition, mutation of 4 amino acids in Ad5-HVR7 or a single mutation at position 451 also blocked FX-mediated effects in vitro and in vivo. We therefore define the regions and amino acids on the Ad5 hexon that bind with high affinity to FX thereby better defining adenovirus infectivity pathways. These vectors may be useful for gene therapy applications where evasion of liver transduction is a prerequisite.
    Blood 06/2009; 114(5):965-71. · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The immunogenicity and cytotoxicity associated with early generations of adenoviral vectors provided a strong incentive for the development of helper-dependent adenovirus, a last generation of adenoviral vectors that is devoid of all viral coding sequences. These vectors have shown to mediate longer high-level transgene expression in vivo with reduced toxicity and thus offer enormous potential for human gene therapy. In addition, they possess a considerably larger cloning capacity than conventional adenoviral vectors making the transfer of large cDNAs, multiple transgenes and longer tissue-specific or regulable promoters possible. In this article, we review the progress made with helper-dependent adenoviral vectors. The development and optimization of scalable production processes and strategies for helper removal will be presented. Current chromatography options available for vector purification and the new challenges facing researchers for the separation of empty particles and/or helper viruses will be discussed. Finally, we will describe recent advances made in our understanding of their interaction with the immune system and their potential as gene delivery vehicles in vivo for the treatment of diseases affecting liver, skeletal muscle and brain.
    Current Gene Therapy 09/2008; 8(4):222-35. · 4.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Current strategies to amplify helper-dependent adenovirus, based on excision of the packaging signal, do not routinely reduce helper adenovirus contamination below 1%. Here, we have tested if reducing the efficiency of the packaging process of the helper adenovirus could impair its packaging without affecting helper-dependent adenovirus production. Interestingly, insertion of attB/attP-PhiC31 sequences flanking the packaging signal significantly lengthens adenovirus cycle up to 60 h without reducing virus viability or production yield. This delay occurs in the absence of PhiC31 recombinase indicating that other mechanisms different from excision of packaging signal must be involved. In addition, at 36 h post-coinfection helper-dependent adenovirus are efficiently produced, while production levels of helper attB/attP-modified adenovirus are 100-1000 times lower than controls. Therefore, these results suggest that attB/attP-mediated packaging impairment of the adenovirus genome is an attractive strategy to significantly reduce helper adenovirus contamination in helper-dependent adenovirus preparations, which in turn would facilitate scaling-up processes for clinical grade preparations.
    Virology 11/2007; 367(1):51-8. · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular Therapy (2006) 13, S50|[ndash]|S50; doi: 10.1016/j.ymthe.2006.08.143 122. Generation of a Family of Ad5 Mutants with Slowed Packaging Kinetics but Non-Affected Packaging Efficiency Raul Alba1,2, Patrick Hearing3, Assumpcio Bosch1,2 and Miguel Chillon1,2,41Departament de Bioquimica i Biologia Molecular, Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain2Centre de Biotecnologia Animal i Terapia Genica (CBATEG), Universitat Autonoma de Barcelona, Bellaterra, Barcelona, Spain3Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY4Centre de Biotecnologia Animal i Terapia Genica (CBATEG), Institucio Catalana de Recerca i Estudis Avan|[ccedil]|ats (ICREA), Barcelona, Spain
    Molecular Therapy 04/2006; · 6.43 Impact Factor
  • Source
    R Alba, A Bosch, M Chillon
    [Show abstract] [Hide abstract]
    ABSTRACT: Last-generation adenovirus vectors, also called helper-dependent or gutless adenovirus, are very attractive for gene therapy because the associated in vivo immune response is highly reduced compared to first- and second-generation adenovirus vectors, while maintaining high transduction efficiency and tropism. Nowadays, gutless adenovirus is administered in different organs, such as the liver, muscle or the central nervous system achieving high-level and long-term transgene expression in rodents and primates. However, as devoid of all viral coding regions, gutless vectors require viral proteins supplied in trans by a helper virus. To remove contamination by a helper virus from the final preparation, different systems based on the excision of the helper-packaging signal have been generated. Among them, Cre-loxP system is mostly used, although contamination levels still are 0.1-1% too high to be used in clinical trials. Recently developed strategies to avoid/reduce helper contamination were reviewed.
    Gene Therapy 11/2005; 12 Suppl 1:S18-27. · 4.20 Impact Factor

Publication Stats

301 Citations
71.77 Total Impact Points

Institutions

  • 2014
    • Cardiff University
      • Institute of Cancer & Genetics
      Cardiff, Wales, United Kingdom
  • 2009–2011
    • University of Glasgow
      • Institute of Cardiovascular and Medical Sciences
      Glasgow, SCT, United Kingdom
  • 2005–2011
    • University of Barcelona
      • Departamento de Bioquímica y Biología Molecular
      Barcelona, Catalonia, Spain
  • 2006
    • Autonomous University of Barcelona
      • Departamento de Bioquímica y Biología Molecular
      Cerdanyola del Vallès, Catalonia, Spain