Lucia Gaddini

Istituto Superiore di Sanità, Roma, Latium, Italy

Are you Lucia Gaddini?

Claim your profile

Publications (6)23.04 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Müller cell activation is an early finding in diabetic retinopathy (DR), but its physiopathologic role in the disease is still unclear, especially in the early phases. We investigated on Müller glial activation in primary rat retinal cultures, exposed to High Glucose (HG), and in retinas from streptozotocin (stz)-induced diabetic rats. First of all, we checked if the presence of Müller glia influenced HG neurotoxicity. In mixed glial/neuronal retinal cultures, a single HG administration (sHG) for 48h induced activation of Müller glia, in absence of neuronal damage. In contrast, in pure neuronal cultures, a marked neurotoxic effect was detected, suggesting that in this cell model Müller glia protect neurons from HG neurotoxicity. To better mimic the diabetic milieu, where retinal cells are constantly bathed in hyperglycemic fluid, and to further characterize astrocytic neuroprotective ability, mixed retinal cultures were exposed to repeated daily replacement of HG (rHG). In this paradigm, starting from 48h, increased apoptosis and synaptic loss were observed, even in the presence of Müller cells. Phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), whose activation triggers a prosurvival pathway, was increased by sHG, while it was down-regulated by rHG, suggesting that ERK1/2 activation is involved in neuroprotection. Consistently, in presence of ERK1/2 inhibitor PD98059, sHG exerted a proapoptotic effect also in glial/neuronal retinal cultures. In line with the in vitro data, early changes in diabetic retinas from stz-injected rats included Müller cell activation and increased pERK1/2 levels, but no signs of neuronal damage. These results suggest that, in the early phases of DR, Müller glial activation does not contribute to neurodegeneration, but may indeed have a neuroprotective activity against HG-induced neurotoxicity through a mechanism involving pERK1/2.
    Experimental Eye Research 05/2014; · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Müller cell activation is an early finding in diabetic retinopathy (DR), but its physiopathologic role in the disease is still unclear, especially in the early phases. We investigated on Müller glial activation in primary rat retinal cultures, exposed to High Glucose (HG), and in retinas from streptozotocin (stz)-induced diabetic rats. First of all, we checked if the presence of Müller glia influenced HG neurotoxicity. In mixed glial/neuronal retinal cultures, a single HG administration (sHG) for 48h induced activation of Müller glia, in absence of neuronal damage. In contrast, in pure neuronal cultures, a marked neurotoxic effect was detected, suggesting that in this cell model Müller glia protect neurons from HG neurotoxicity. To better mimic the diabetic milieu, where retinal cells are constantly bathed in hyperglycemic fluid, and to further characterize astrocytic neuroprotective ability, mixed retinal cultures were exposed to repeated daily replacement of HG (rHG). In this paradigm, starting from 48h, increased apoptosis and synaptic loss were observed, even in the presence of Müller cells. Phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), whose activation triggers a prosurvival pathway, was increased by sHG, while it was down-regulated by rHG, suggesting that ERK1/2 activation is involved in neuroprotection. Consistently, in presence of ERK1/2 inhibitor PD98059, sHG exerted a proapoptotic effect also in glial/neuronal retinal cultures. In line with the in vitro data, early changes in diabetic retinas from stz-injected rats included Müller cell activation and increased pERK1/2 levels, but no signs of neuronal damage. These results suggest that, in the early phases of DR, Müller glial activation does not contribute to neurodegeneration, but may indeed have a neuroprotective activity against HG-induced neurotoxicity through a mechanism involving pERK1/2.
    Experimental Eye Research 01/2014; · 3.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, citicoline has been the object of remarkable interest as a possible neuroprotectant. The aim of this study was to investigate if citicoline affected cell survival in primary retinal cultures and if it exerted neuroprotective activity in conditions modeling retinal neurodegeneration. Primary retinal cultures, obtained from rat embryos, were first treated with increasing concentrations of citicoline (up to 1000 µM) and analyzed in terms of apoptosis and caspase activation and characterized by immunocytochemistry to identify neuronal and glial cells. Subsequently, excitotoxic concentration of glutamate or High Glucose-containing cell culture medium (HG) was administered as well-known conditions modeling neurodegeneration. Glutamate or HG treatments were performed in the presence or not of citicoline. Neuronal degeneration was evaluated in terms of apoptosis and loss of synapses. The results showed that citicoline did not cause any damage to the retinal neuroglial population up to 1000 µM. At the concentration of 100 µM, it was able to counteract neuronal cell damage both in glutamate- and HG-treated retinal cultures by decreasing proapoptotic effects and contrasting synapse loss. These data confirm that citicoline can efficiently exert a neuroprotective activity. In addition, the results suggest that primary retinal cultures, under conditions inducing neurodegeneration, may represent a useful system to investigate citicoline neuroprotective mechanisms.
    International Journal of Molecular Sciences 01/2014; 15(4):6286-6297. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dysbindin, the product of the DTNBP1 gene, was identified by yeast two hybrid assay as a binding partner of dystrobrevin, a cytosolic component of the dystrophin protein complex. Although its functional role has not yet been completely elucidated, the finding that dysbindin assembles into the biogenesis of lysosome related organelles complex 1 (BLOC-1) suggests that it participates in intracellular trafficking and biogenesis of organelles and vesicles. Dysbindin is ubiquitous and in brain is expressed primarily in neurons. Variations at the dysbindin gene have been associated with increased risk for schizophrenia. As anomalies in retinal function have been reported in patients suffering from neuropsychiatric disorders, we investigated the expression of dysbindin in the retina. Our results show that differentially regulated dysbindin isoforms are expressed in rat retina during postnatal maturation. Interestingly, we found that dysbindin is mainly localized in Müller cells. The identification of dysbindin in glial cells may open new perspectives for a better understanding of the functional involvement of this protein in visual alterations associated to neuropsychiatric disorders.
    Experimental Eye Research 08/2013; · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The early effects of the diabetic milieu on retinal tissue and their relation to the Renin-Angiotensin system (RAS) activation are poorly known. Here we investigated RAS signaling in retinas explanted from adult rats exposed for 48 h to high glucose (HG), with or without the Angiotensin Converting Enzyme inhibitor enalaprilat, which blocks RAS. HG was observed to i) initiate a phosphotyrosine-dependent signaling cascade; ii) up-regulate Angiotensin(1) Receptor (AT(1)R); iii) activate src tyrosine kinase and increase phosphorylation of Pyk2, PLCgamma1 and ERK1/2; and iv) activate Akt and the transcription factor CREB. In the presence of enalaprilat, tyrosine phosphorylation signal and AT(1)R upregulation decreased and activation of PLCgamma1 and CREB reverted, showing their relation to RAS signaling. In line with Akt activation, no apoptosis or synapse degeneration was found. Müller glia was activated, but in a RAS-independent manner. Our results suggest that, in early phases of HG exposure, a pro-survival cell program may be induced in the retina.
    Neurobiology of Disease 06/2009; 35(2):278-85. · 5.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Beta-dystrobrevin, a member of the dystrobrevin protein family, is a dystrophin-related and -associated protein restricted to non-muscle tissues and is highly expressed in kidney, liver and brain. Dystrobrevins are now thought to play an important role in intracellular signal transduction, in addition to providing a membrane scaffold in muscle, but the precise role of beta-dystrobrevin has not yet been determined. To study beta-dystrobrevin's function in brain, we used the yeast two-hybrid approach to look for interacting proteins. Four overlapping clones were identified that encoded Kif5A, a neuronal member of the Kif5 family of proteins that consists of the heavy chains of conventional kinesin. A direct interaction of beta-dystrobrevin with Kif5A was confirmed by in vitro and in vivo association assays. Co-immunoprecipitation with a monoclonal kinesin heavy chain antibody precipitated both alpha- and beta-dystrobrevin, indicating that this interaction is not restricted to the beta-dystrobrevin isoform. The site for Kif5A binding to beta-dystrobrevin was localized in a carboxyl-terminal region that seems to be important in heavy chain-mediated kinesin interactions and is highly homologous in all three Kif5 isoforms, Kif5A, Kif5B and Kif5C. Pull-down and immunofluorescence experiments also showed a direct interaction between beta-dystrobrevin and Kif5B. Our findings suggest a novel function for dystrobrevin as a motor protein receptor that might play a major role in the transport of components of the dystrophin-associated protein complex to specific sites in the cell.
    Journal of Cell Science 01/2004; 116(Pt 23):4847-56. · 5.88 Impact Factor