Liankun Sun

Jilin University, Yung-chi, Jilin Sheng, China

Are you Liankun Sun?

Claim your profile

Publications (18)59.26 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have suggested that the novel BH3 mimetic S1 could induce apoptosis in diverse tumor cell lines through endoplasmic reticulum (ER) stress or mitochondrial cell death pathways. The activation of c-Jun N-terminal kinase (JNK) through inositol requiring enzyme-1 (IRE1) is closely connected to ER stress-induced apoptosis. However, the role of JNK is complex, as there are different JNK subtypes and the function of each subtype is still not entirely clear. Here we found that the mRNA expression of JNK3 was continuously high in S1-treated human ovarian cancer SKOV3/DDP cells using a human unfolded protein response (UPR) pathway PCR array. Pharmacological inhibition of JNK3 increased cell sensitivity to apoptosis induced by S1. Furthermore, inhibition of JNK3 induced accumulation of both acidic compartment and p62, and upregulated ROS production. Our results suggest that JNK3 plays a pro-survival role during ER stress through preventing the block of autophagic flux and reducing oxidative stress in SKOV3/DDP cells. Inhibition of JNK3 may be a potential method to enhance the killing effect of the Bcl-2 inhibitor S1. Anat Rec, 2014. © 2014 Wiley Periodicals, Inc.
    The Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology 07/2014; · 1.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hyperbaric oxygen (HBO) is emerging as a therapy for brain ischemia, although its benefits are still debated. The present study aimed to investigate the effect of HBO on brain damage in a rat model of transient focal cerebral ischemia and its underlying mechanism of action. Male Wistar rats, which had suffered 1.5 h of transient middle cerebral artery occlusion (tMCAO) and had a Longa’s neuron score of 3, were given pure oxygen at 3.0 atm absolute, for 60 minutes after the third hour of reperfusion. After 24 h of reperfusion, rat brains were removed and studied. 2,3,5-triphenyltetrazolium chloride (TTC) and hematoxylin and eosin staining revealed that the infarct ratio in the HBO group increased remarkably when compared with the MCAO group. Up-regulation of extracellular signal-regulated kinase 1/2 (ERK1/2) activation was detected in the HBO group because of reactive oxygen species (ROS) generation. Autophagy appeared to be obstructed in the HBO group. Administration of the ERK1/2 inhibitor U0126 decreased the infarct ratio and improved protein clearance by autophagy in the HBO group. Collectively, these results suggest that HBO enlarges the area of brain damage via reactive oxygen species-induced activation of ERK1/2, which interrupts autophagy flux.
    European journal of pharmacology 04/2014; · 2.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metastasis suppressor 1 (MTSS1) is an important tumor suppressor protein, and loss of MTSS1 expression has been observed in several types of human cancers. Importantly, decreased MTSS1 expression is associated with more aggressive forms of breast and prostate cancers, and with poor survival rate. Currently, it remains unclear how MTSS1 is regulated in cancer cells, and whether reduced MTSS1 expression contributes to elevated cancer cell proliferation and migration. Here we report that the SCFβ-TRCP regulates MTSS1 protein stability by targeting it for ubiquitination and subsequent destruction via the 26S proteasome. Notably, depletion of either Cullin 1 or β-TRCP1 led to increased levels of MTSS1. We further demonstrated a crucial role for Ser322 in the DSGXXS degron of MTSS1 in governing SCFβ-TRCP-mediated MTSS1 degradation. Mechanistically, we defined that Casein Kinase Iδ (CKIδ) phosphorylates Ser322 to trigger MTSS1's interaction with β-TRCP for subsequent ubiquitination and degradation. Importantly, introducing wild-type MTSS1 or a non-degradable MTSS1 (S322A) into breast or prostate cancer cells with low MTSS1 expression significantly inhibited cellular proliferation and migration. Moreover, S322A-MTSS1 exhibited stronger effects in inhibiting cell proliferation and migration when compared to ectopic expression of wild-type MTSS1. Therefore, our study provides a novel molecular mechanism for the negative regulation of MTSS1 by β-TRCP in cancer cells. It further suggests that preventing MTSS1 degradation could be a possible novel strategy for clinical treatment of more aggressive breast and prostate cancers.
    Oncotarget 11/2013; · 6.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Primary objective: p62/ZIP as the autophagy receptor can transport the misfolded proteins to a macroautophagy-lysosome system for degradation and also create a positive feedback loop between p62/ZIP and Nrf2. However, the role of p62/ZIP on cerebral ischaemia is unclear. The aim of this study was to evaluate the role of p62/ZIP in the regulation of endoplasmic reticulum(ER) stress induced by cerebral ischaemia/reperfusion. Research design: Different ischemic periods were designed by transient middle cerebral artery occlusion (tMCAO) using the suture method. Methods and procedures: At 24 hours after reperfusion, the ischaemic brain tissue was studied histologically and biochemically for autophagic, ER stress and Keap1-Nrf2-ARE signalling pathway markers. Main outcomes and results: Prolongation of ischaemia significantly increased the cortical injury observed in rats and was associated with a gradual increase in the protein expression of ubiquitin-aggregates, Grp78, GADD153/CHOP and p62/ZIP. Autophagy marker Atg12-Atg5 and LC3-PE increased and then decreased. Moreover, p62/ZIP mRNA expression increased and then decreased and was consistent with Nrf2 activation. Conclusions: p62/ZIP not only plays a key role in scavenging protein aggregates during autophagy, but it may also be involved in preventing oxidative injury and alleviating ER stress through the Keap1-Nrf2-ARE signalling pathway during cerebral ischaemia/reperfusion injury.
    Brain Injury 06/2013; · 1.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neural stem cells (NSCs) are usually affected by a number of biological functions in neural traumatic and degenerative diseases. Autophagy may be involved in these diseases. However, whether autophagy could affect NSCs is largely unknown. Therefore, we aimed to investigate intracellular microstructures, proliferation, axon extension, and Beclin-1 expression of rat NSCs by basic culture medium and conditioned medium without epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF). Transmission electron microscopy showed the formation of autophagic vacuoles in conditioned medium. Compared to the control group with normal medium, the number of secondary neurosphere was significantly reduced whereas the expression of Beclin-1 was enhanced. The majority of NSCs were nestin-positive when EGF/bFGF was withdrawn for 3 days and showed enhanced neurite extension, which was suppressed by autophagy antagonist 3-methyladenine. Our findings revealed that a short-term paucity of mitogens in microenvironments could induce autophagy of NSCs, which facilitated NSCs' axonal growth.
    Journal of Biochemical and Molecular Toxicology 05/2013; · 1.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: CLIC4/mtCLIC (referred to here as CLIC4) is one of the seven-member family of chloride intracellular channels (CLIC). CLIC4 localizes to the mitochondria, nucleus, cytoplasm and other organellular compartments and participates in the apoptotic response to stress. However, the role of CLIC4 in oxidative stress and apoptosis is not well understood. In this study, we showed the important role of CLIC4 in apoptosis of C6 glioma cells induced by hydrogen peroxide (H2O2). Our results showed that CLIC4 protein expression was upregulated following H2O2-induced C6 cell apoptosis. The upregulation of CLIC4 protein expression was paralleled with an increased Bax/Bcl-2 ratio, cytochrome c and cleaved caspase-3 protein expression upon H2O2-induced C6 cell apoptosis. Suppression of CLIC4 expression by RNA interference enhanced cell apoptosis, but the ratio of Bax/Bcl-2 was not involved in this process. Dissipation of mitochondrial membrane potential and nuclear translocation of CLIC4 were involved in the activation of apoptosis induced by H2O2. Our data indicate that CLIC4 protein may be a key element in the apoptotic response to oxidative stress.
    Oncology Reports 01/2013; · 2.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NaYF4:Yb3+,Er3+@Ag core–shell nanocomposites were prepared. Due to the outer shell of Ag, some modifications were found on the upconversion (UC) processes of NaYF4:Yb3+,Er3+ core nanoparticles (NPs) caused by the co-interaction of surface effect, surface plasma absorption effect and local thermal effect under infrared radiation. Upon 980 nm excitation, the relative UC intensity of the green (2H11/2, 4S3/2–4I15/2) to red (4F9/2–4I15/2) and the slope of power-dependence increased intensively, and three-photon population process for the green level appeared.
    Materials Chemistry and Physics 01/2013; 137(3):1021–1024. · 2.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes mellitus (DM) is a chronic metabolic disease, and its incidence is growing worldwide. The endoplasmic reticulum (ER) is a central component of cellular functions and is involved in protein folding and trafficking, lipid synthesis, and maintenance of calcium homeostasis. The ER is also a sensor of both intra- and extracellular stress and thus participates in monitoring and maintaining cellular homeostasis. Therefore, the ER is one site of interaction between environmental signals and a cell's biological function. The ER is tightly linked to autophagy, inflammation, and apoptosis, and recent evidence suggests that these processes are related to the pathogenesis of DM and its complications. Thus, the ER has been considered an intersection integrating multiple stress responses and playing an important role in metabolism-related diseases including DM. Here, we review the relationship between the ER and autophagy, inflammation, and apoptosis in DM to better understand the molecular mechanisms of this disease.
    Journal of Diabetes Research 01/2013; 2013:193461. · 3.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cadmium (Cd) is an important nephrotoxic pollutant. To examine late effects on the kidney of individuals previously exposed to chronic Cd at very low levels, male Wistar rats were given 20 nmol/kg i.p. injections of Cd every other day for 4 weeks. At the 20(th), 28(th), 36(th), 44(th) and 52(nd) week of the study, renal metal accumulation, morphology and function were examined. Immunochemical staining was performed to detect renal 3-nitrotyrosine (3-NT) accumulation, metallothionein (MT) expression, cell proliferation and global DNA methylation. Results showed that renal Cd concentration and MT expression along with 3-NT accumulation were significantly higher in the Cd group than that in the control. Histopathologically renal tubule damage at the early stage and hyperplasia at the late stage were observed in the Cd group. Renal fibrosis in glomeruli was evident in the Cd group, particularly at the late stage of the study. Immunoreactivity of global DNA methylation was markedly diminished in the Cd group at both 20(th) and 52(nd) weeks. These results suggest that previous exposure to chronic Cd at very low level induced persistent damaging effects on the kidney along with increases in cell proliferation and global DNA hypomethylation.
    Dose-Response 01/2013; 11(1):60-81. · 1.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of lysosomal system in oxidative stress-induced apoptosis in cancer cells is not fully understood. Menadione is frequently used as oxidative stress model. It is indicated that menadione could induce autophagy in Hela cells. In the present study, we examined whether the lysosomal inhibitor, ammonium chloride (NH(4) Cl) could prevent the autophagy flux by inhibiting the fusion of autophagosomes with lysosomes and enhance apoptosis induced by menadione via mitochondrial pathway. The results demonstrated generation and accumulation of reactive oxygen species and increased levels of ubiquitinated proteins and GRP78 in cells treated with both menadione and NH(4) Cl. Our data indicates that lysosomal system through autophagy plays an important role in preventing menadione-induced apoptosis in Hela cells by clearing misfolded proteins, which alleviates endoplasmic reticulum stress. Anat Rec, 2012. © 2012 Wiley Periodicals, Inc.
    The Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology 11/2012; · 1.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rabies is an acute viral infection of the central nervous system (CNS) and is typically fatal in humans and animals; however, its pathogenesis remains poorly understood. In this study, the morphological changes of dendrites and dendritic spines in the CA1 region of the hippocampus were investigated in mice that were intracerebrally infected with an MRV strain of the street rabies virus. Hematoxylin-eosin and fluorescent staining analysis of brain sections from the infected mice showed very little morphological changes of neuronal bodies and neuronal processes. However, we found a significant decrease in the number of dendritic spines. Primary neuronal cultures derived from the hippocampus of mice (embryonic day 16.5) that were infected with the virus also showed an obvious decrease in the number of dendritic spines. Furthermore, the decrease in the number of dendritic spines was related to the depolymerization of actin filaments (F-actin). We propose that the observed structural changes can partially explain the severe clinical disease that was found in experimental models of street rabies virus infections.
    Journal of General Virology 10/2012; · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CLIC4/mtCLIC, a chloride intracellular channel protein, localizes to mitochondria, endoplasmic reticulum (ER), nucleus and cytoplasm, and participates in the apoptotic response to stress. Apoptosis and autophagy, the main types of the programmed cell death, seem interconnected under certain stress conditions. However, the role of CLIC4 in autophagy regulation has yet to be determined. In this study, we demonstrate upregulation and nuclear translocation of the CLIC4 protein following starvation in U251 cells. CLIC4 siRNA transfection enhanced autophagy with increased LC3-II protein and puncta accumulation in U251 cells under starvation conditions. In that condition, the interaction of the 14-3-3 epsilon isoform with CLIC4 was abolished and resulted in Beclin 1 overactivation, which further activated autophagy. Moreover, inhibiting the expression of CLIC4 triggered both mitochondrial apoptosis involved in Bax/Bcl-2 and cytochrome c release under starvation and endoplasmic reticulum stress-induced apoptosis with CHOP and caspase-4 upregulation. These results demonstrate that CLIC4 nuclear translocation is an integral part of the cellular response to starvation. Inhibiting the expression of CLIC4 enhances autophagy and contributes to mitochondrial and ER stress-induced apoptosis under starvation.
    PLoS ONE 06/2012; 7(6):e39378. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hydrophilic Y3Al5O12 (YAG) and (YxGd1−x)3Al5O12 nanoparticles (NPs) doped with Ce3+ ions were synthesized by a solvothermal method and used for cell-imaging. The crystallite sizes and photoluminescence spectra were tuned by lanthanide ions (Gd3+, Ce3+) doping. Without any surface modification, the YAG:Ce NPs show good water solubility, colloid stability and low toxicity. The intracellular uptake of the YAG:Ce NPs was visualized using a confocal fluorescence microscope under the excitation of a 457 nm laser due to the strong absorption of fluorescent NPs in the blue region. The non-bleaching property was confirmed by comparing with organic dye Alexa488. Overall, we demonstrated that the YAG:Ce NPs can serve as an efficient fluorescence imaging agent with visible light excitation and without photo-bleaching, which shows great foreground in bio-imaging, especially with confocal imaging system for in vitro studies.
    RSC Advances 04/2012; 2(9):3897-3905. · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The function of autophagy in cisplatin-treated cancer cells is not fully understood. Cisplatin treatment induced degradation of ubiquitinated proteins by autophagy, which reduced apoptosis induced by endoplasmic reticulum (ER) stress and downregulated the mitochondrial pathway of apoptosis. Inhibition of autophagy using 3-methyladenine (3-MA) or chloroquine (CQ) increased the levels of intracellular misfolded proteins, which enhanced cellular apoptosis. We found that tunicamycin, an ER stress inducer, augmented cisplatin cytotoxicity by upregulating ER stress-mediated apoptosis. Our data indicates that autophagy plays an important role in preventing cisplatin-induced apoptosis in HeLa cells, thus inhibition of autophagy may improve cisplatin chemotherapy.
    Cancer letters 01/2012; 314(2):232-43. · 5.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel kind of core–shell nanocomposite Gd2O3:Eu3+@mesoporous SiO2 was successfully fabricated, which consisted of a solvothermal synthesized Gd2O3:Eu3+ nanospheres core, a thin nonporous silica midterm layer and an ordered mesoporous silica shell. The XRD, SEM, TEM, FTIR, N2 adsorption/desorption and PL spectra were employed to characterize the composites. The cytotoxicity of Gd2O3:Eu3+@mesoporous SiO2 and Gd2O3:Eu3+ was assessed by the standard MTT assay. The composites had spherically monodisperse morphology and a narrow size distribution around 180nm in diameter. Furthermore, they also demonstrated the strong photoluminescence of 5D0–7FJ emissions. In addition, the composites exhibited good property of sustained drug release by using ibuprofen (IBU) as model drug in the drug delivery process. Therefore, the drug release process could be easily tracked and identified through photoluminescence. Overall, the present composites have potential significant biomedical application as ideal bifunctional materials.
    Materials Research Bulletin 12/2011; 46(12):2296-2303. · 1.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mechanisms of cisplatin resistance in cancer cells are not fully understood. Here, we show a critical role for the ubiquitin-binding protein p62/SQSTM1 in cisplatin resistance in human ovarian cancer cells (HOCCs). Specifically, we found that cisplatin-resistant SKOV3/DDP cells express much higher levels of p62 than do cisplatin-sensitive SKOV3 cells. The protein p62 binds ubiquitinated proteins for transport to autophagic degradation, reducing apoptosis induced by endoplasmic reticulum (ER) stress in SKOV3/DDP cells. Knockdown of p62 or inhibition of autophagy using 3-methyladenine resensitises SKOV3/DDP cells to cisplatin. Collectively, our data indicate that p62 acts as a receptor or adaptor for autophagic degradation of ubiquitinated proteins, and plays an important role in preventing ER stress-induced apoptosis, leading to cisplatin resistance in HOCCs.
    European journal of cancer (Oxford, England: 1990) 03/2011; 47(10):1585-94. · 4.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This report describes an integrated study on identification of potential markers for gastric cancer in patients' cancer tissues and sera based on: (i) genome-scale transcriptomic analyses of 80 paired gastric cancer/reference tissues and (ii) computational prediction of blood-secretory proteins supported by experimental validation. Our findings show that: (i) 715 and 150 genes exhibit significantly differential expressions in all cancers and early-stage cancers versus reference tissues, respectively; and a substantial percentage of the alteration is found to be influenced by age and/or by gender; (ii) 21 co-expressed gene clusters have been identified, some of which are specific to certain subtypes or stages of the cancer; (iii) the top-ranked gene signatures give better than 94% classification accuracy between cancer and the reference tissues, some of which are gender-specific; and (iv) 136 of the differentially expressed genes were predicted to have their proteins secreted into blood, 81 of which were detected experimentally in the sera of 13 validation samples and 29 found to have differential abundances in the sera of cancer patients versus controls. Overall, the novel information obtained in this study has led to identification of promising diagnostic markers for gastric cancer and can benefit further analyses of the key (early) abnormalities during its development.
    Nucleic Acids Research 10/2010; 39(4):1197-207. · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulation of reactive oxygen species (ROS) such as hydrogen peroxide (H(2)O(2)) is an oxidative stress response, which induced various defense mechanisms or programmed cell death (PCD). As one of the major types of PCD, autophagy has been observed in response to several anticancer drugs and demonstrated to be responsible for cell death. To date, however, the exact mechanism by which ROS regulates autophagy is still poorly understood. Thus, the purposes of this study were to elucidate how H(2)O(2) exerts its cytotoxic effects on malignant glioma U251 cells and to uncover the molecular mechanism that might be involved. Here, we show that H(2)O(2)-induced autophagy and apoptosis in U251 cells are mediated through the Beclin 1 and Akt/mTOR pathways. Accumulation of ROS leads to changes in mitochondrial permeability with loss of mitochondrial membrane potential and disruption of mitochondrial dynamics at a transcriptional level of fission and fusion. Overexpression of cellular Bcl-2 partially inhibited autophagy through both the Beclin 1 and the Akt/mTOR pathways and led to recovery of mitochondrial dynamics. When autophagy was prevented at an early stage by 3-methyladenine, apoptosis significantly increased. Our data provide the first evidence that H(2)O(2) induces autophagy through interference with the Beclin 1 and Akt/mTOR signaling pathways and is regulated by the anti-apoptotic gene Bcl-2 in glioma U251 cells.
    Toxicological Sciences 06/2009; 110(2):376-88. · 4.48 Impact Factor