Thomas Schröder

Martin Luther University of Halle-Wittenberg, Halle-on-the-Saale, Saxony-Anhalt, Germany

Are you Thomas Schröder?

Claim your profile

Publications (6)19.31 Total impact

  • Rapid Communications in Mass Spectrometry 04/2014; 28(7):835-8. · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The topology of the GCAP-2 homodimer was investigated by chemical cross-linking and high resolution mass spectrometry. Complementary conducted size-exclusion chromatography and analytical ultracentrifugation studies indicated that GCAP-2 forms a homodimer both in the absence and in the presence of Ca(2+). In-depth MS and MS/MS analysis of the cross-linked products was aided by (15) N-labeled GCAP-2. The use of isotope-labeled protein delivered reliable structural information on the GCAP-2 homodimer, enabling an unambiguous discrimination between cross-links within one monomer (intramolecular) or between two subunits (intermolecular). The limited number of cross-links obtained in the Ca(2+)-bound state allowed us to deduce a defined homodimeric GCAP-2 structure by a docking and molecular dynamics approach. In the Ca(2+)-free state, GCAP-2 is more flexible as indicated by the higher number of cross-links. We consider stable isotope-labeling to be indispensable for deriving reliable structural information from chemical cross-linking data of multi-subunit protein assemblies.
    Journal of the American Society for Mass Spectrometry 09/2013; · 3.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The retinal guanylylcyclases ROS-GC 1 and 2 are regulated via the intracellular site by guanylylcyclase-activating proteins (GCAPs). The mechanisms of how GCAPs activate their target proteins remain elusive as exclusively structures of nonactivating calcium-bound GCAP-1 and -2 are available. In this work, we apply a combination of chemical cross-linking with amine-reactive cross-linkers and photoaffinity labeling followed by a mass spectrometric analysis of the created cross-linked products to study the interaction between N-terminally myristoylated GCAP-2 and a peptide derived from the catalytic domain of full-length ROS-GC 1. In our studies, only a few cross-linked products were obtained for calcium-bound GCAP-2, pointing to a well-defined structure of the GCAP-2-GC peptide complex. A much larger number of cross-links were detected in the absence of calcium, indicating a high flexibility of calcium-free GCAP-2 in the complex with the GC peptide. On the basis of the distance constraints imposed by the cross-links, we were able to create a structural model of the calcium-loaded complex between myristoylated GCAP-2 and the GC peptide.
    Biochemistry 05/2012; 51(24):4932-49. · 3.38 Impact Factor
  • Source
    Thomas Schröder, Hauke Lilie, Christian Lange
    [Show abstract] [Hide abstract]
    ABSTRACT: Guanylate cyclase activating protein-2 (GCAP-2) is a Ca²⁺-binding protein of the neuronal calcium sensor (NCS) family. Ca²⁺-free GCAP-2 activates the retinal rod outer segment guanylate cyclases ROS-GC1 and 2. Native GCAP-2 is N-terminally myristoylated. Detailed structural information on the Ca²⁺-dependent conformational switch of GCAP-2 is missing so far, as no atomic resolution structures of the Ca²⁺-free state have been determined. The role of the myristoyl moiety remains poorly understood. Available functional data is incompatible with a Ca²⁺-myristoyl switch as observed in the prototype NCS protein, recoverin. For the homologous GCAP-1, a Ca²⁺-independent sequestration of the myristoyl moiety inside the proteins structure has been proposed. In this article, we compare the thermodynamic stabilities of myristoylated and non-myristoylated GCAP-2 in their Ca²⁺-bound and Ca²⁺-free forms, respectively, to gain information on the nature of the Ca²⁺-dependent conformational switch of the protein and shed some light on the role of its myristoyl group. In the absence of Ca²⁺, the stability of the myristoylated and non-myristoylated forms was indistinguishable. Ca²⁺ exerted a stabilizing effect on both forms of the protein, which was significantly stronger for myr GCAP-2. The stability data were corroborated by dye binding experiments performed to probe the solvent-accessible hydrophobic surface of the protein. Our results strongly suggest that the myristoyl moiety is permanently solvent-exposed in Ca²⁺-free GCAP-2, whereas it interacts with a hydrophobic part of the protein's structure in the Ca²⁺-bound state.
    Protein Science 07/2011; 20(7):1155-65. · 2.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Guanylate cyclase-activating proteins (GCAPs) are neuronal Ca(2+) sensors that play a central role in shaping the photoreceptor light response and in light adaptation through the Ca(2+)-dependent regulation of the transmembrane retinal guanylate cyclase. GCAPs are N-terminally myristoylated, and the role of the myristoyl moiety is not yet fully understood. While protein lipid chains typically represent membrane anchors, the crystal structure of GCAP-1 showed that the myristoyl chain of the protein is completely buried within a hydrophobic pocket of the protein, which stabilizes the protein structure. Therefore, we address the question of the localization of the myristoyl group of GCAP-2 in the absence and in the presence of lipid membranes as well as DPC detergents (as a membrane substitute amenable to solution state NMR). We investigate membrane binding of both myristoylated and nonmyristoylated GCAP-2 and study the structure and dynamics of the myristoyl moiety of GCAP-2 in the presence of POPC membranes. Further, we address structural alterations within the myristoylated N-terminus of GCAP-2 in the presence of membrane mimetics. Our results suggest that upon membrane binding the myristoyl group is released from the protein interior and inserts into the lipid bilayer.
    Biophysics of Structure and Mechanism 02/2011; 40(4):565-76. · 2.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Guanylate cyclase-activating protein-2 (GCAP-2) is a retinal Ca2+ sensor protein. It is responsible for the regulation of both isoforms of the transmembrane photoreceptor guanylate cyclase, a key enzyme of vertebrate phototransduction. GCAP-2 is N-terminally myristoylated and full activation of its target proteins requires the presence of this lipid modification. The structural role of the myristoyl moiety in the interaction of GCAP-2 with the guanylate cyclases and the lipid membrane is currently not well understood. In the present work, we studied the binding of Ca2+-free myristoylated and non-myristoylated GCAP-2 to phospholipid vesicles consisting of dimyristoylphosphatidylcholine or of a lipid mixture resembling the physiological membrane composition by a biochemical binding assay and 2H solid-state NMR. The NMR results clearly demonstrate the full-length insertion of the aliphatic chain of the myristoyl group into the membrane. Very similar geometrical parameters were determined from the 2H NMR spectra of the myristoyl group of GCAP-2 and the acyl chains of the host membranes, respectively. The myristoyl chain shows a moderate mobility within the lipid environment, comparable to the acyl chains of the host membrane lipids. This is in marked contrast to the behavior of other lipid-modified model proteins. Strikingly, the contribution of the myristoyl group to the free energy of membrane binding of GCAP-2 is only on the order of -0.5 kJ/mol, and the electrostatic contribution is slightly unfavorable, which implies that the main driving forces for membrane localization arises through other, mainly hydrophobic, protein side chain-lipid interactions. These results suggest a role of the myristoyl group in the direct interaction of GCAP-2 with its target proteins, the retinal guanylate cyclases.
    Biochimica et Biophysica Acta 01/2008; 1768(12):3171-81. · 4.66 Impact Factor