Min Hu

Institute of Bioengineering and Nanotechnology, Tumasik, Singapore

Are you Min Hu?

Claim your profile

Publications (4)24.94 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Bioartificial kidneys (BAKs) containing human primary renal proximal tubule cells (HPTCs) have been applied in clinical trials. The results were encouraging, but also showed that more research is required. Animal cells or cell lines are not suitable for clinical applications, but have been mainly used in studies on BAK development as large numbers of such cells could be easily obtained. It is difficult to predict HPTC performance based on data obtained with other cell types. To enable more extensive studies on HPTCs, we have developed a bioreactor containing single hollow fiber membranes that requires relatively small amounts of cells. Special hollow fiber membranes with the skin layer on the outer surface and consisting of polyethersulfone/polyvinylpyrrolidone were developed. The results suggested that such hollow fiber membranes were more suitable for the bioreactor unit of BAKs than membranes with an inner skin layer. An HPTC-compatible double coating was applied to the insides of the hollow fiber membranes, which sustained the formation of functional epithelia under bioreactor conditions. Nevertheless, the state of differentiation of the primary human cells remained a critical issue and should be further addressed. The bioreactor system described here will facilitate further studies on the relevant human cell type.
    Biomaterials 08/2011; 32(34):8806-15. · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bioartificial kidneys (BAKs) combine a conventional hemofilter in series with a bioreactor unit containing renal epithelial cells. The epithelial cells derived from the renal tubule should provide transport, metabolic, endocrinologic and immunomodulatory functions. Currently, primary human renal proximal tubule cells are most relevant for clinical applications. However, the use of human primary cells is associated with many obstacles, and the development of alternatives and an unlimited cell source is one of the most urgent challenges. BAKs have been applied in Phase I/II and Phase II clinical trials for the treatment of critically ill patients with acute renal failure. Significant effects on cytokine concentrations and long-term survival were observed. A subsequent Phase IIb clinical trial was discontinued after an interim analysis, and these results showed that further intense research on BAK-based therapies for acute renal failure was required. Development of BAK-based therapies for the treatment of patients suffering from end-stage renal disease is even more challenging, and related problems and research approaches are discussed herein, along with the development of mobile, portable, wearable and implantable devices.
    Fibrogenesis & Tissue Repair 01/2010; 3:14.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hydrogel scaffolds are highly hydrated polymer networks that allow cells to adhere, proliferate and differentiate in the treatment of diseased or injured tissues and organs. Using hydrodynamic shaping and in situ cross-linking of hydrogel precursors, we have developed a highly efficient "hydrodynamic spinning" approach for synthesizing hydrogel fibers of different diameters in a multiphase coaxial flow. A triple-orifice spinneret has been created, and three different types of hydrogel precursors have been examined. Without changing the spinning head, hollow and solid hydrogel fibers with different diameters have been spun by simply manipulating the ratio of input flow rates. Together with the ability of simultaneous cell-seeding in the hydrogel matrix, hydrodynamic spinning can be broadly applied to many hydrogel materials, providing a powerful technique in the preparation of fiber-like and tubule-like hydrogel constructs for tissue engineering.
    Biomaterials 10/2009; 31(5):863-9. · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gelatin-hydroxyphenylpropionic acid (Gtn-HPA) hydrogels are highly porous and biodegradable materials. Herein we report a fiber spinning method that can produce cell-seeded solid and hollow hydrogel fibers by enzymatically cross-linking Gtn-HPA in solutions flowing within a capillary tube. The cell-immobilized hydrogel fibers, with feature sizes down to 20 microm, are formed as a result of continuous cross-linking of cell-mixed hydrogel precursors in a multiphase laminar flow. This fiber formation process is mild enough to retain the cell viability. The continuous fiber formation, simultaneous cell encapsulation, as well as versatile combination of fiber structures provided by this approach make it a promising and effective technique for the preparation of cell-seeded hydrogel scaffolds and carriers for tissue engineering.
    Biomaterials 04/2009; 30(21):3523-31. · 8.31 Impact Factor