Gerhard Wagner

Harvard University, Cambridge, Massachusetts, United States

Are you Gerhard Wagner?

Claim your profile

Publications (2)17.62 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In eukaryotes, exposure to stress conditions causes a shift from cap-dependent to cap-independent translation. In trypanosomatids, environmental switches are the driving force of a developmental program of gene expression, but it is yet unclear how their translation machinery copes with their constantly changing environment. Trypanosomatids have a unique cap structure (cap-4) and encode four highly diverged paralogs of the cap-binding protein, eIF4E; none were found to genetically complement a yeast mutant failing to express eIF4E. Here we show that in promastigotes, a typical cap-binding complex is anchored through LeishIF4E-4, which associates with components of the cap-binding pre-initiation complex. In axenic amastigotes, expression of LeishIF4E-4 decreases and the protein does not bind the cap, whereas LeishIF4E-1 maintains its expression level and associates with the cap structure and with translation initiation factors. However, LeishIF4E-1 does not interact with eIF4G-like proteins in both life stages, excluding its involvement in cap-dependent translation. Using pull-down assays and mass-spectrometry, we identified a novel, non-conserved 4E-Interacting Protein (Leish4E-IP), which binds to LeishIF4E-1 in promastigotes, but not in amastigotes. Yeast two-hybrid and NMR spectroscopy confirmed the specificity of this interaction. We propose that Leish4E-IP is a translation regulator that is involved in switching between cap-dependent and alternative translation pathways.
    Nucleic Acids Research 07/2011; 39(19):8404-15. · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Translation initiation in eukaryotes is mediated by assembly of the eIF4F complex over the m(7)GTP cap structure at the 5'-end of mRNAs. This requires an interaction between eIF4E and eIF4G, two eIF4F subunits. The Leishmania orthologs of eIF4E are structurally diverged from their higher eukaryote counterparts, since they have evolved to bind the unique trypanosomatid cap-4 structure. Here, we characterize a key eIF4G candidate from Leishmania parasites (LeishIF4G-3) that contains a conserved MIF4G domain. LeishIF4G-3 was found to coelute with the parasite eIF4F subunits from an m(7)GTP-Sepharose column and to bind directly to LeishIF4E. In higher eukaryotes the eIF4E-eIF4G interaction is based on a conserved peptide signature [Y(X(4))Lphi], where X is any amino acid and Phi is a hydrophobic residue. A parallel eIF4E-binding peptide was identified in LeishIF4G-3 (20-YPGFSLDE-27). However, the binding motif varies extensively: in addition to Y20 and L25, binding strictly requires the presence of F23, whereas the hydrophobic amino acid (Phi) is dispensable. The LeishIF4E-LeishIF4G-3 interaction was also confirmed by nuclear magnetic resonance (NMR) studies. In view of these diversities, the characterization of the parasite eIF4E-eIF4G interaction may not only serve as a novel target for inhibiting Leishmaniasis but also provide important insight for future drug discovery.
    Nucleic Acids Research 04/2009; 37(10):3243-53. · 8.81 Impact Factor

Publication Stats

25 Citations
17.62 Total Impact Points

Top Journals


  • 2011
    • Harvard University
      Cambridge, Massachusetts, United States
  • 2009
    • Harvard Medical School
      • Department of Biological Chemistry and Molecular Pharmacology
      Boston, Massachusetts, United States