Richard Kavanagh

University of Guelph, Guelph, Ontario, Canada

Are you Richard Kavanagh?

Claim your profile

Publications (9)27.06 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous laboratory based studies have shown that oil sands process-affected waters (OSPWs) containing high concentrations of naphthenic acids (>25mg/l) have adverse effects on the reproductive physiology of fish. The purpose of this study was to assess the reproductive development and health of a wild population of fathead minnows (Pimephales promelas) inhabiting an OSPW pond that has moderate concentrations of naphthenic acids (∼10mg/l). Fathead minnows were collected at various times during the period of 2006 through 2008 from Demonstration Pond (OSPW) located at Syncrude Canada Ltd., and two reference sites, Beaver Creek reservoir and Poplar Creek reservoir, which are all north of Fort McMurray, AB, Canada. Condition factor, gill histopathology, gonadosomatic indices, liver somatic indices, male secondary sexual characteristics, and plasma sex steroids were examined. Depending on the time of year that fathead minnows were collected, there were differences in the condition factor, gonadosomatic indices, liver somatic indices, and secondary sexual characteristics of fathead minnows (in males) from Demonstration Pond when compared to the fathead minnows from the reference sites. In comparison to reference fish, lower concentrations of 11-ketotestosterone were measured in the plasma of male fathead minnows collected from Demonstration Pond in June 2006 and July 2007. Black spot disease and Ligula intestinalis were prevalent in fathead minnows from the reference sites but were not observed in fathead minnows from Demonstration Pond. The opercula of fathead minnows from Demonstration Pond also differed from those of reference fish. An examination of the gills of fathead minnows from Demonstration Pond revealed that were a number of proliferative and degenerative alterations relative to reference fish. Even though the fathead minnow population has been maintained in this OSPW pond since 1993, the results of this study demonstrate that the OSPW continues to affect the reproductive development and health of the fathead minnows compared to fish collected at reference sites.
    Aquatic toxicology (Amsterdam, Netherlands) 01/2013; 130-131C:201-209. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rapid and reliable toxicity assessment of oil sands process-affected waters (OSPW) is needed to support oil sands reclamation projects. Conventional toxicity tests using whole animals are relatively slow, costly, and often subjective, while at the same time requiring the sacrifice of test organisms as is the case with lethal dosage/concentration assays. A nonlethal alternative, using fish cell lines, has been developed for its potential use in supporting oil sands reclamation planning and to help predict the viability of aquatic reclamation models such as end-pit lakes. This study employed six fish cell lines (WF-2, GFSk-S1, RTL-W1, RTgill-W1, FHML, FHMT) in 24 h viability assays for rapid fluorometric assessment of cellular integrity and functionality. Forty-nine test water samples collected from the surface of oil sands developments in the Athabasca Oil Sands deposit, north of Fort McMurray, Alberta, Canada, were evaluated in blind. Small subsample volumes (8 ml) were mixed with 2 ml of 5× concentrated exposure media and used for direct cell exposures. All cell line responses in terms of viability as measured by Alamar blue assay, correlated well with the naphthenic acids (NA) content in the samples (R (2) between 0.4519 and 0.6171; p < 0.0001) when data comparisons were performed after the bioassays. NA or total acid-extractable organics group has been shown to be responsible for most of the acute toxicity of OSPW and our results further corroborate this. The multifish cell line bioassay provides a strong degree of reproducibility among tested cell lines and good relative sensitivity of the cell line bioassay as compared to available in vivo data that could lead to cost effective, high-throughput screening assays.
    In Vitro Cellular & Developmental Biology - Animal 12/2012; · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have demonstrated that oil sands process-affected water (OSPW) impairs the reproduction of fish and that naphthenic acids (NAs), a natural constituent of oil sands, are suspected of being responsible. This study evaluates the potential impact of NAs on the reproduction of adult fathead minnows (Pimephales promelas) under laboratory conditions. Fathead minnows exposed to a 10 mg/l naphthenic acid extract (NAE) for 21 days spawned fewer eggs and males had reduced expression of secondary sexual characteristics. Male fathead minnows exposed to a 5 mg/l NAE had lower plasma levels of 11-ketotestosterone whereas those exposed to a 10 mg/l NAE had lower concentrations of both testosterone and 11-ketotestosterone. Since OSPW also contains high concentrations of salts, this study also investigated whether they modify the toxicity of NAEs. Spawning was significantly reduced in fathead minnows exposed to a 10 mg/l NAE alone and in combination with NaHCO₃ (700 mg/l), typical of concentrations in OSPW(.) Interestingly, the addition of NaHCO₃ reduced the inhibitory effects of the NAE on the numbers of reproductive tubercles and plasma testosterone levels. Further studies showed that NaHCO₃ acted by reducing the uptake of the NAE to the fish. NaHCO₃ but not NaCl or Na₂SO₄ reduced the acute toxic effects of the NAE on fathead minnow embryo and larvae mortality. Collectively, these studies show that the NAs in OSPW have the potential to negatively affect reproduction in fathead minnows and that HCO₃⁻ reduces the acute and chronic toxicity of NAs.
    Aquatic toxicology (Amsterdam, Netherlands) 03/2012; 116-117:34-42. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Large volumes of fluid tailings are generated during the extraction of bitumen from oil sands. As part of their reclamation plan, oil sands operators in Alberta propose to transfer these fluid tailings to end pit lakes and, over time, these are expected to develop lake habitats with productive capabilities comparable to natural lakes in the region. This study evaluates the potential impact of various oil sands process-affected waters (OSPW) on the reproduction of adult fathead minnow (Pimephales promelas) under laboratory conditions. Two separate assays with aged OPSW (>15 years) from the experimental ponds at Syncrude Canada Ltd. showed that water containing high concentrations of naphthenic acids (NAs; >25 mg/l) and elevated conductivity (>2000 μS/cm) completely inhibited spawning of fathead minnows and reduced male secondary sexual characteristics. Measurement of plasma sex steroid levels showed that male fathead minnows had lower concentrations of testosterone and 11-ketotestosterone whereas females had lower concentrations of 17β-estradiol. In a third assay, fathead minnows were first acclimated to the higher salinity conditions typical of OSPW for several weeks and then exposed to aged OSPW from Suncor Energy Inc. (NAs ∼40 mg/l and conductivity ∼2000 μS/cm). Spawning was significantly reduced in fathead minnows held in this effluent and male fathead minnows had lower concentrations of testosterone and 11-ketotestosterone. Collectively, these studies demonstrate that aged OSPW has the potential to negatively affect the reproductive physiology of fathead minnows and suggest that aquatic habitats with high NAs concentrations (>25 mg/l) and conductivities (>2000 μS/cm) would not be conducive for successful fish reproduction.
    Aquatic toxicology (Amsterdam, Netherlands) 10/2010; 101(1):214-20. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Naphthenic acids (NA) are a complex mixture of carboxylic acids that are natural constituents of oil sand found in north-eastern Alberta, Canada. NA are released and concentrated in the alkaline water used in the extraction of bitumen from oil sand sediment. NA have been identified as the principal toxic components of oil sands process-affected water (OSPW), and microbial degradation of lower molecular weight (MW) NA decreases the toxicity of NA mixtures in OSPW. Analysis by proton nuclear magnetic resonance spectroscopy indicated that larger, more cyclic NA contain greater carboxylic acid content, thereby decreasing their hydrophobicity and acute toxicity in comparison to lower MW NA. The relationship between the acute toxicity of NA and hydrophobicity suggests that narcosis is the probable mode of acute toxic action. The applicability of a (quantitative) structure-activity relationship [(Q)SAR] model to accurately predict the toxicity of NA-like surrogates was investigated. The U.S. Environmental Protection Agency (EPA) ECOSAR model predicted the toxicity of NA-like surrogates with acceptable accuracy in comparison to observed toxicity values from Vibrio fischeri and Daphnia magna assays, indicating that the model has potential to serve as a prioritization tool for identifying NA structures likely to produce an increased toxicity. Investigating NA of equal MW, the ECOSAR model predicted increased toxic potency for NA containing fewer carbon rings. Furthermore, NA structures with a linear grouping of carbon rings had a greater predicted toxic potency than structures containing carbon rings in a clustered grouping.
    Journal of Toxicology and Environmental Health Part A 01/2010; 73(4):319-29. · 1.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Large volumes of oil sands process-affected waters (OSPW) are produced during the extraction of bitumen from oil sand. There are approximately 10(9) m(3) of OSPW currently being stored in settling basins on oil sands mining sites in Northern Alberta. Developers plan to create artificial lakes with OSPW and it is expected that this water may eventually enter the environment. This study was conducted in order to determine if synchronous fluorescence spectroscopy (SFS) could detect OSPW contamination in water systems. Water samples collected from ponds containing OSPW and selected sites in the Alberta oil sands region were evaluated using SFS with an offset value of 18 nm. OSPW ponds consistently displayed a minor peak at 282.5 nm and a broad major peak ranging between 320 and 340 nm. Water from reference sites within the oil sands region had little fluorescence at 282.5 nm but greater fluorescence beyond 345 nm. Naphthenic acids are the major toxic component of OSPW. Both a commercial naphthenic acid and a naphthenic acid extract prepared from OSPW had similar fluorescent spectra with peaks at 280 nm and 320 nm and minor shoulders at approximately 303 and 331 nm. The presence of aromatic acids closely associated with the naphthenic acids may be responsible for unique fluorescence at 320-340 nm. SFS is proposed to be a simple and fast method to monitor the release of OSPW into ground and surface waters in the oil sands region.
    Chemosphere 04/2009; 76(1):120-6. · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fractions of methylated naphthenic acids (NAs) isolated from oil sands process-affected waterwere collected utilizing Kugelrohr distillation and analyzed by proton nuclear magnetic resonance (1H NMR) spectroscopy. 1H NMR analysis revealed that the ratio of methyl ester hydrogen atoms to remaining aliphatic hydrogen atoms increased from 0.130 to 0.214, from the lowest to the greatest molecular weight (MW) fractions, respectively, indicating that the carboxylic acid content increased with greater MW. Acute toxicity assays with exposure to monocarboxyl NA-like surrogates demonstrated that toxicity increased with increasing MW (D. magna LC50 values of 10 +/- 1.3 mM and 0.59 +/- 0.20 mM for the respective lowest and highest MW NA-like surrogates); however, with the addition of a second carboxylic acid moiety, the toxicity was significantly reduced (D. magna LC50 values of 10 +/- 1.3 mM and 27 +/- 2.2 mM forthe respective monocarboxyl and dicarboxyl NA-like surrogates of similar MW). Increased carboxylic acid content within NA structures of higher MW decreases hydrophobicity and, consequently, offers a plausible explanation as to why lower MW NAs in oil sands process-affected water are more toxic than the greater MW NAs.
    Environmental Science and Technology 02/2009; 43(2):266-71. · 5.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent expansion within the oil sands industry of the Athabasca Basin of Alberta, Canada has led to increased concern regarding process-affected wastewaters produced during bitumen extraction. Naphthenic acids (NAs) have been identified as the primary toxic constituents of oil sands process-affected waters (OSPW) and studies have shown that with time, microbial degradation of lower molecular weight NAs has led to a decrease in observed toxicity. As earlier studies identified the need for an "unequivocal demonstration" of lower molecular weight NAs being the primary contributors to mixture toxicity, a study was initiated to fractionate an extracted NA mixture by molecular weight and to assess each fraction's toxicity. Successful molecular weight fractionation of a methylated NA mixture was achieved using a Kugelrohr distillation apparatus, in which fractions collected at higher boiling points contained NAs with greater total carbon content as well as greater degree of cyclicity. Assays with Vibrio fischeri bioluminescence (via Microtox assay) revealed that the lowest molecular weight NAs collected had higher potency (EC50: 41.9+/-2.8 mg l(-1)) than the highest molecular weight NAs collected (EC50: 64.9+/-7.4 mg l(-1)). Although these results support field observations of microbial degradation of low molecular weight NAs decreasing OSPW toxicity, it is not clear why larger NAs, given their greater hydrophobicity, would be less toxic.
    Chemosphere 08/2008; 72(9):1309-14. · 3.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Athabasca oil sands of Alberta, Canada contain an estimated 174 billion barrels of bitumen. During oil sands refining processes, an extraction tailings mixture is produced that has been reported as toxic to aquatic organisms and is therefore collected in settling ponds on site. Investigation into the toxicity of these tailings pond waters has identified naphthenic acids (NAs) and their sodium salts as the major toxic components, and a multi-year study has been initiated to identify the principal toxic components within NA mixtures. Future toxicity studies require a large volume of a NA mixture, however, a well-defined bulk extraction technique is not available. This study investigated the use of a weak anion exchanger, diethylaminoethyl-cellulose (DEAE-cellulose), to remove humic-like material present after collecting the organic acid fraction of oil sands tailings pond water. The NA extraction and clean-up procedure proved to be a fast and efficient method to process large volumes of tailings pond water, providing an extraction efficiency of 41.2%. The resulting concentrated NA solution had a composition that differed somewhat from oil sands fresh tailings, with a reduction in the abundance of lower molecular weight NAs being the most significant difference. This reduction was mainly due to the initial acidification of tailings pond water. The DEAE-cellulose treatment had only a minor effect on the NA concentration, no noticeable effect on the NA fingerprint, and no significant effect on the mixture toxicity towards Vibrio fischeri.
    Chemosphere 09/2006; 64(8):1346-52. · 3.14 Impact Factor