Ankita Goradia

University of Melbourne, Melbourne, Victoria, Australia

Are you Ankita Goradia?

Claim your profile

Publications (3)14.77 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The lamin B receptor (LBR) is a highly unusual inner nuclear membrane protein with multiple functions. Reduced levels are associated with decreased neutrophil lobularity, whereas complete absence of LBR results in severe skeletal dysplasia and in utero/perinatal lethality. We describe a mouse pedigree, Lym3, with normal bone marrow and thymic development but profound and progressive lymphopenia particularly within the T cell compartment. This defect arises from a point mutation within the Lbr gene with only trace mutant protein detectable in homozygotes, albeit sufficient for normal development. Reduced T cell homeostatic proliferative potential and life span in vivo were found to contribute to lymphopenia. To investigate the role of LBR in gene silencing in hematopoietic cells, we examined gene expression in wild-type and mutant lymph node CD8 T cells and bone marrow neutrophils. Although LBR deficiency had a very mild impact on gene expression overall, for common genes differentially expressed in both LBR-deficient CD8 T cells and neutrophils, gene upregulation prevailed, supporting a role for LBR in their suppression. In summary, this study demonstrates that LBR deficiency affects not only nuclear architecture but also proliferation, cell viability, and gene expression of hematopoietic cells.
    The Journal of Immunology 11/2011; 188(1):122-34. DOI:10.4049/jimmunol.1100942 · 4.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Suppressor of cytokine signaling (SOCS)-1 is a critical inhibitor of IFN-gamma signal transduction in vivo, but the precise biochemical mechanism of action of SOCS-1 is unclear. Studies in vitro have shown that SOCS-1 binds to Jaks and inhibits their catalytic activity, but recent studies indicate SOCS-1 may act in a similar manner to SOCS-3 by firstly interacting with cytokine receptors and then inhibiting Jak activity. Here, we have generated mice, termed Ifngr1(441F), in which a putative SOCS-1 binding site, tyrosine 441 (Y441), on the IFN-gamma receptor subunit 1 (IFNGR1) is mutated. We confirm that SOCS-1 binds to IFNGR1 in wild-type but not mutant cells. Mutation of Y441 results in impaired negative regulation of IFN-gamma signaling. IFN-gamma-induced STAT1 activation is prolonged in Ifngr1(441F) cells, but not to the extent seen in cells completely lacking SOCS-1, suggesting that SOCS-1 maintains activity to modulate IFN-gamma signaling via other mechanisms. Despite this, we show that hypersensitivity to IFN-gamma results in enhanced innate tumor protection in Ifngr1(441F) mice in vivo, and unregulated expression of an IFN-gamma-dependent chemokine, monokine-induced by IFN-gamma. Collectively, these data indicate that Y441 contributes to the regulation of signaling through IFNGR1 via the recruitment of SOCS-1 to the receptor.
    The Journal of Immunology 10/2009; 183(7):4537-44. DOI:10.4049/jimmunol.0901010 · 4.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lyn kinase, a member of the Src family of tyrosine kinases, functions as both a positive and negative regulator of B cell activation. In the absence of Lyn, BCR signaling is unregulated, leading to perturbed B cell development, hyperactive B cells, and lethal Ab-mediated autoimmune disease. We have generated a mutant mouse pedigree, termed Mld4, harboring a novel mutation in the gene encoding Lyn, which renders the protein devoid of kinase activity. Despite similarities between the phenotypes of Lyn(Mld4/Mld4) and Lyn(-/-) mice, the spectrum of defects in Lyn(Mld4/Mld4) mice is less severe. In particular, although defects in the B cell compartment are similar, splenomegaly, myeloid expansion, and autoantibody production, characteristic of Lyn(-/-) mice, are absent or mild in Lyn(Mld4/Mld4) mice. Critically, immune complex deposition and complement activation in Lyn(Mld4/Mld4) glomeruli do not result in fulminant glomerulonephritis. Our data suggest that BCR hypersensitivity is insufficient for the development of autoimmune disease in Lyn(-/-) mice and implicate other cell lineages, particularly proinflammatory cells, in autoimmune disease progression. Furthermore, our results provide evidence for an additional role for Lyn kinase, distinct from its catalytic activity, in regulating intracellular signaling pathways.
    The Journal of Immunology 03/2009; 182(4):2020-9. DOI:10.4049/jimmunol.0803127 · 4.92 Impact Factor