Ryota Abe

The University of Tokyo, Tokyo, Tokyo-to, Japan

Are you Ryota Abe?

Claim your profile

Publications (8)26.05 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Since their first finding in wool 50 years ago, keratin-associated proteins (KAPs), which are classified into 3 groups; high sulfur (HS) KAPs, ultra high sulfur (UHS) KAPs, and high glycine-tyrosine (HGT) KAPs, have been the target of curiosity for scientists due to their characteristic amino acid sequences. While HS and UHS KAPs are known to function in disulfide bond crosslinking, the function of HGT KAPs remains unknown. To clarify the function as well as the binding partners of HGT KAPs, we prepared KAP8.1 and other KAP family proteins, the trichocyte intermediate filament proteins (IFP) K85 and K35, the head domain of K85, and the C subdomain of desmoplakin C-terminus (DPCT-C) and investigated the interactions between them in vitro. Western blot analysis and isothermal titration calorimetry (ITC) indicate that KAP8.1 binds to the head domain of K85, which is helically aligned around the axis of the intermediate filament (IF). From these results and transmission electron microscopy (TEM) observations of bundled filament complex in vitro, we propose that the helical arrangement of IFs found in the orthocortex, which is uniquely distributed on the convex fiber side of the hair, is regulated by KAP8.1. Structure-dependent binding of DPCT-C to trichocyte IFP was confirmed by Western blotting, ITC, and circular dichroism. Moreover, DPCT-C also binds to some HGT KAPs. It is probable that such bidirectional binding property of HGT KAPs contribute to the mechanical robustness of hair.
    Journal of Structural Biology 06/2013; · 3.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Iron is an essential nutrient for the proliferation of Staphylococcus aureus during bacterial infections. The iron-regulated surface determinant (Isd) system of S. aureus transports and metabolizes iron porphyrin (heme) captured from the host organism. Transportation of heme across the thick cell wall of this bacterium requires multiple relay points. The mechanism by which heme is physically transferred between Isd transporters is largely unknown because of the transient nature of the interactions involved. Herein, we show that the IsdC transporter not only passes heme ligand to another class of Isd transporter, as previously known, but can also perform self-transfer reactions. IsdA shows a similar ability. A genetically encoded photoreactive probe was used to survey the regions of IsdC involved in self-dimerization. We propose an updated model that explicitly considers self-transfer reactions to explain heme delivery across the cell wall. An analogous photo-cross-linking strategy was employed to map transient interactions between IsdC and IsdE transporters. These experiments identified a key structural element involved in the rapid and specific transfer of heme from IsdC to IsdE. The resulting structural model was validated with a chimeric version of the homologous transporter IsdA. Overall, our results show that the ultra-weak interactions between Isd transporters are governed by bona fide protein structural motifs.
    Journal of Biological Chemistry 03/2012; 287(20):16477-87. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ATP-binding cassette (ABC) transporters couple hydrolysis of ATP with vectorial transport across the cell membrane. We have reconstituted ABC transporter MsbA in nanodiscs of various sizes and lipid compositions to test whether ATPase activity is modulated by the properties of the bilayer. ATP hydrolysis rates, Michaelis-Menten parameters, and dissociation constants of substrate analog ATP-γ-S demonstrated that physicochemical properties of the bilayer modulated binding and ATPase activity. This is remarkable when considering that the catalytic unit is located ~50Å from the transmembrane region. Our results validated the use of nanodiscs as an effective tool to reconstitute MsbA in an active catalytic state, and highlighted the close relationship between otherwise distant transmembrane and ATPase modules.
    FEBS letters 11/2011; 585(22):3533-7. · 3.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Trichocyte intermediate filament protein (IFP) is a heterodimeric complex that plays a pivotal role in the hair shaft for its mechanical strength, hair shape, and so on. Trichocyte IFP consists of acidic-type IFP and basic-type IFP, and the well-studied supramolecular assembly process of the complex occurs via the following steps: dimer formation, tetramer formation, formation of the lateral 32mer, and the elongation of the 32mer. Among these interactions, only the dimer formation, owing to coiled-coil interaction, has been described in detail; the nature of other interactions remains unspecified. For each assembly step, we report interaction isotherms obtained by means of isothermal titration calorimetry at various urea and NaCl concentrations. Decreasing the urea concentration generally promotes protein refolding, and we therefore expected to observe endothermic interactions owing to the refolding process. However, exothermic interactions were observed at 4 and 2 M urea, along with various characteristic endothermic interactions at the other urea concentrations as well as NaCl titration. The thermal responses described herein enabled us to analyze the protein supramolecular assembly process in a stepwise manner.
    Journal of Molecular Biology 03/2011; 408(5):832-8. · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: N-Acylamino acids are a new family of versatile biological surfactants capable of extracting integral membrane proteins of various topologies from the biological membrane, in many instances surpassing the efficiency of commercial detergents.
    Molecular BioSystems 04/2010; 6(4):677-9. · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been a conventional notion that cytoplasmic recombinant expression leads to either soluble protein or inclusion bodies. In the latter case, it was always assumed that proteins in inclusion bodies (IBs) are more or less unfolded and hence require complete denaturing condition for solubilization, which uses strong detergents, urea or guanidine hydrochloride. However, we often observe distribution of expressed proteins in both soluble and insoluble fractions. In such expression, IBs are often loose and of flocculate morphology. We believe that such distribution is due to association of near native structures of the expressed proteins, which cause either aggregation into insoluble fractions or unstable soluble proteins. In our experience, although not reported by others, interleukin-1alpha, interferon-gamma, tumor necrosis factors, fibroblast growth factors, His-tagged fyn kinase and many other proteins showed such behavior. If this occurs, we have experienced problems of instability, low yield and insolubility whether purification is done from the soluble fraction or by refolding of IBs. Arginine has shown great promise in non-denaturating solubilization of some of these proteins we have tested.
    Current pharmaceutical biotechnology 02/2010; 11(3):309-12. · 3.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: FLAG-tag is one of the commonly used purification technologies for recombinant proteins. An antibody, M2, specifically binds to the FLAG-tag whether it is attached to N- or C-terminus of proteins to be purified. The bound proteins are generally eluted by competition with a large excess of free FLAG peptide. This requires synthetic FLAG peptide and also removal of bound FLAG peptide for M2 column regeneration. We have shown before that arginine at mild pH can effectively dissociate protein-protein or protein-ligand interactions, e.g. in Protein-A, antigen and dye-affinity chromatography. We have tested here elution of FLAG-fused proteins by arginine for columns of M2-immobilized resin using several proteins in comparison with competitive elution by FLAG peptide or low pH glycine buffer. Active and folded proteins were successfully and effectively eluted using 0.5-1M arginine at pH 3.5-4.4, as reported in this paper.
    Protein Expression and Purification 05/2009; 67(2):148-55. · 1.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arginine hydrochloride (ArgHCl) is a versatile solvent additive, as it suppresses protein aggregation. ArgHCl has been used for protein refolding and to solubilize proteins from loose inclusion bodies. Immobilized metal affinity chromatography (IMAC) is one of the most commonly used technologies for purification of recombinant proteins. Here we have evaluated compatibility of ArgHCl with IMAC purification for his-tag proteins. ArgHCl clearly interfered with protein binding to Ni-columns. Nevertheless, such interference was greatly reduced at ArgHCl concentration below 200 mM, demonstrating that IMAC purification can be done even in the presence of ArgHCl.
    Biochemical and Biophysical Research Communications 02/2009; 381(3):306-10. · 2.41 Impact Factor