Sebastian Sudek

Monterey Bay Aquarium Research Institute, Moss Beach, California, United States

Are you Sebastian Sudek?

Claim your profile

Publications (12)93.07 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Theoretical studies predict that competition for limited resources reduces biodiversity to the point of ecological instability, whereas strong predator/prey interactions enhance the number of coexist-ing species and limit fluctuations in abundances. In open ocean ecosystems, competition for low availability of essential nutrients results in relatively few abundant microbial species. The remarkable stability in overall cell abundance of the dominant photosyn-thetic cyanobacterium Prochlorococcus is assumed to reflect a simple food web structure strongly controlled by grazers and/or viruses. This hypothesized link between stability and ecological interactions, however, has been difficult to test with open ocean microbes because sampling methods commonly have poor temporal and spatial resolution. Here we use continuous techniques on two different winter-time cruises to show that Prochlorococcus cell production and mortality rates are tightly synchronized to the day/night cycle across the subtropical Pacific Ocean. In warmer waters, we observed harmonic oscillations in cell production and mortality rates, with a peak in mortality rate consistently occurring ∼6 h after the peak in cell production. Essentially no cell mortality was observed during daylight. Our results are best explained as a synchronized two-component trophic interaction with the per-cap-ita rates of Prochlorococcus consumption driven either directly by the day/night cycle or indirectly by Prochlorococcus cell production. Light-driven synchrony of food web dynamics in which most of the newly produced Prochlorococcus cells are consumed each night likely enforces ecosystem stability across vast expanses of the open ocean. cyanobacteria | cell division | mortality | flow cytometry | SeaFlow P otential interdependencies between species diversity and ecosystem stability have gained increased focus due to global changes in species distributions and abundances (1). Strong predator–prey interactions are predicted to enhance the number of coexisting species and limit fluctuations in abundances (2, 3), whereas competition for limited resources is predicted to reduce biodiversity, in some instances, to the point of ecological instability (3, 4). Mechanisms underlying ecosystem stability remain challenging to characterize on relevant temporal and spatial scales, in part because few empirical data are available to test these theories. Our focus is on the microbial communities within surface waters of the vast oligotrophic gyre of the north Pacific Subtropical Ocean. Here, competition for low concentrations of essential nutrients is hypothesized to result in relatively few abundant microbial species, typified by their extremely small cell sizes and streamlined genomes (5). The cyanobacterium Prochlorococcus numerically dominates the photosynthetic community in these regions, with a relatively constant cell abundance close to half a billion cells per liter despite a population doubling time of approximately one day (6). Such constant cell numbers are predicted when both prey and predators are abundant and broadly dispersed and when the predator–prey interactions are tightly coupled (7). Understanding the stability of this coupling is important as loss processes determine how Prochlorococcus cell production is transferred into the marine food web. Estimates of cell production and cell mortality rates for Prochlorococcus remain sparse, however, as they are commonly derived from incubations in bottles (8) or measures of cell cycle progression over the day/night cycle (9), both of which are labor intensive and thus limited in their broad-scale applicability (10). Here we estimated Prochlorococcus cell production and cell mortality rates continuously across a 2,900-km transect in the northeast Pacific Ocean in winter (October–November 2011) using a shipboard-based flow cytometer, SeaFlow (11) and show that, throughout the gyre, rates of Prochlorococcus cell production and cell mortality are both tightly synchronized to the day/night cycle, which likely helps stabilize open ocean ecosystems.
    Proceedings of the National Academy of Sciences 06/2015; DOI:10.1073/pnas.1424279112 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Algae with secondary plastids of a red algal origin, such as ochrophytes (photosynthetic stramenopiles), are diverse and ecologically important, yet their evolutionary history remains controversial. We sequenced plastid genomes of two ochrophytes, Ochromonas sp. CCMP1393 (Chrysophyceae) and Trachydiscus minutus (Eustigmatophyceae). A shared split of the clpC gene as well as phylogenomic analyses of concatenated protein sequences demonstrated that chrysophytes and eustigmatophytes form a clade, the Limnista, exhibiting an unexpectedly elevated rate of plastid gene evolution. Our analyses also indicate that the root of the ochrophyte phylogeny falls between the recently redefined Khakista and Phaeista assemblages. Taking advantage of the expanded sampling of plastid genome sequences, we revisited the phylogenetic position of the plastid of Vitrella brassicaformis, a member of Alveolata with the least derived plastid genome known for the whole group. The results varied depending on the dataset and phylogenetic method employed, but suggested that the Vitrella plastids emerged from a deep ochrophyte lineage rather than being derived vertically from a hypothetical plastid-bearing common ancestor of alveolates and stramenopiles. Thus, we hypothesize that the plastid in Vitrella, and potentially in other alveolates, may have been acquired by an endosymbiosis of an early ochrophyte.
    Scientific Reports 05/2015; 5:10134. DOI:10.1038/srep10134 · 5.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spliceosomal introns are a hallmark of eukaryotic genes that are hypothesized to play important roles in genome evolution but have poorly understood origins. Although most introns lack sequence homology to each other, recently new families of spliceosomal introns that are repeated hundreds of times in individual genomes have been discovered in a few organisms. The prevalence and conservation of these introner elements (IEs) or introner-like elements (ILEs) in other taxa, as well as their evolutionary relationships to regular spliceosomal introns, are still unknown. Here, we systematically investigate introns in the widespread marine green alga Micromonas and report new families of IEs, numerous intron presence-absence polymorphisms, and potential intron insertion hot-spots. The new families enabled identification of conserved IE secondary structure features and establishment of a novel general model for repetitive intron proliferation across genomes. Despite shared secondary structure, the IE families from each Micromonas lineage bear no obvious sequence similarity to those in the other lineages, suggesting their appearance is intimately linked with the process of speciation. Two of the new IE families come from an Arctic culture (Micromonas Clade E2) isolated from a polar region where this alga is increasing in abundance due to climate change. The same two families were detected in metagenomic data from Antarctica - a system where Micromonas has never before been reported. Strikingly high identity between the Arctic isolate and Antarctic coding sequences that flank the IEs suggests connectivity between populations in the two polar systems that we postulate occurs through deep-sea currents. Recovery of Clade E2 sequences in North Atlantic Deep Waters beneath the Gulf Stream supports this hypothesis. Our work illuminates the dynamic relationships between an unusual class of repetitive introns, genome evolution, speciation and global distribution of this sentinel marine alga. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
    Molecular Biology and Evolution 05/2015; DOI:10.1093/molbev/msv122 · 14.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cyanobacteria Prochlorococcus and Synechococcus are important marine primary producers. We explored their distributions and co-variance along a physico-chemical gradient from coastal to open ocean waters in the Northeastern Pacific Ocean. An interannual pattern was delineated in the dynamic transition zone where upwelled and eastern boundary current waters mix, and two new Synechococcus clades, EPC1 and EPC2 were identified. By applying state-of-the-art phylogenetic analysis tools to barcoded 16S amplicon datasets we observed higher abundance of Prochlorococcus HLI and LLI in years when more oligotrophic water intruded farther inshore, while under stronger upwelling Synechococcus I and IV dominated. However, contributions of some cyanobacterial clades were proportionally relatively constant, e.g., Synechococcus EPC2. In addition to supporting observations that Prochlorococcus LLI thrive at higher irradiances than other LL taxa, the results suggest LLI tolerate lower temperatures than previously reported. The phylogenetic precision of our 16S rRNA gene analytical approach and depth of barcoded sequencing also facilitated detection of clades at low abundance in unexpected places. These include Prochlorococcus at the coast and Cyanobium-related sequences offshore, although it remains unclear whether these came from resident or potentially advected cells. Our study enhances understanding of cyanobacterial distributions in an ecologically important eastern boundary system.
    Environmental Microbiology 12/2014; DOI:10.1111/1462-2920.12742 · 6.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vitamin B1 (thiamine pyrophosphate, TPP) is essential to all life but scarce in ocean surface waters. In many bacteria and a few eukaryotic groups thiamine biosynthesis genes are controlled by metabolite-sensing mRNA-based gene regulators known as riboswitches. Using available genome sequences and transcriptomes generated from ecologically important marine phytoplankton, we identified 31 new eukaryotic riboswitches. These were found in alveolate, cryptophyte, haptophyte and rhizarian phytoplankton as well as taxa from two lineages previously known to have riboswitches (green algae and stramenopiles). The predicted secondary structures bear hallmarks of TPP-sensing riboswitches. Surprisingly, most of the identified riboswitches are affiliated with genes of unknown function, rather than characterized thiamine biosynthesis genes. Using qPCR and growth experiments involving two prasinophyte algae, we show that expression of these genes increases significantly under vitamin B1-deplete conditions relative to controls. Pathway analyses show that several algae harboring the uncharacterized genes lack one or more enzymes in the known TPP biosynthesis pathway. We demonstrate that one such alga, the major primary producer Emiliania huxleyi, grows on 4-amino-5-hydroxymethyl-2-methylpyrimidine (a thiamine precursor moiety) alone, although long thought dependent on exogenous sources of thiamine. Thus, overall, we have identified riboswitches in major eukaryotic lineages not known to undergo this form of gene regulation. In these phytoplankton groups, riboswitches are often affiliated with widespread thiamine-responsive genes with as yet uncertain roles in TPP pathways. Further, taxa with 'incomplete' TPP biosynthesis pathways do not necessarily require exogenous vitamin B1, making vitamin control of phytoplankton blooms more complex than the current paradigm suggests.The ISME Journal advance online publication, 29 August 2014; doi:10.1038/ismej.2014.146.
    The ISME Journal 11/2014; 8:2517-2529. DOI:10.1038/ismej.2014.146 · 9.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.
    Proceedings of the National Academy of Sciences 09/2014; 111(44):15827–15832. DOI:10.1073/pnas.1416751111 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inteins are rare, translated genetic parasites mainly found in bacteria and archaea, while spliceosomal introns are distinctly eukaryotic features abundant in most nuclear genomes. Using targeted metagenomics, we discovered an intein in an Atlantic population of the photosynthetic eukaryote, Bathycoccus, harbored by the essential spliceosomal protein PRP8 (processing factor 8 protein). Although previously thought exclusive to fungi, we also identified PRP8 inteins in parasitic (Capsaspora) and predatory (Salpingoeca) protists. Most new PRP8 inteins were at novel insertion sites that, surprisingly, were not in the most conserved regions of the gene. Evolutionarily, Dikarya fungal inteins at PRP8 insertion site a appeared more related to the Bathycoccus intein at a unique insertion site, than to other fungal and opisthokont inteins. Strikingly, independent analyses of Pacific and Atlantic samples revealed an intron at the same codon as the Bathycoccus PRP8 intein. The two elements are mutually exclusive and neither was found in cultured Bathycoccus or other picoprasinophyte genomes. Thus, wild Bathycoccus contain one of few non-fungal eukaryotic inteins known and a rare polymorphic intron. Our data indicate at least two Bathycoccus ecotypes exist, associated respectively with oceanic or mesotrophic environments. We hypothesize that intein propagation is facilitated by marine viruses; and, while intron gain is still poorly understood, presence of a spliceosomal intron where a locus lacks an intein raises the possibility of new, intein-primed mechanisms for intron gain. The discovery of nucleus-encoded inteins and associated sequence polymorphisms in uncultivated marine eukaryotes highlights their diversity and reveals potential sexual boundaries between populations indistinguishable by common marker genes.
    The ISME Journal 05/2013; 7(9). DOI:10.1038/ismej.2013.70 · 9.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ostreococcus is a marine picophytoeukaryote for which culture studies indicate there are 'high-light' and 'low-light' adapted ecotypes. Representatives of these ecotypes fall within two to three 18S ribosomal DNA (rDNA) clades for the former and one for the latter. However, clade distributions and relationships to this form of niche partitioning are unknown in nature. We developed two quantitative PCR primer-probe sets and enumerated the proposed ecotypes in the Pacific Ocean as well as the subtropical and tropical North Atlantic. Statistical differences in factors such as salinity, temperature and NO(3) indicated the ecophysiological parameters behind clade distributions are more complex than irradiance alone. Clade OII, containing the putatively low-light adapted strains, was detected at warm oligotrophic sites. In contrast, Clade OI, containing high-light adapted strains, was present in cooler mesotrophic and coastal waters. Maximal OI abundance (19 555±37 18S rDNA copies per ml) was detected in mesotrophic waters at 40 m depth, approaching the nutricline. OII was often more abundant at the deep chlorophyll maximum, when nutrient concentrations were significantly higher than at the surface (stratified euphotic zone waters). However, in mixed euphotic-zone water columns, relatively high numbers (for example, 891±107 18S rDNA copies per ml, Sargasso Sea, springtime) were detected at the surface. Both Clades OI and OII were found at multiple euphotic zone depths, but co-occurrence at the same geographical location appeared rare and was detected only in continental slope waters. In situ growth rate estimates using these primer-probes and better comprehension of physiology will enhance ecological understanding of Ostreococcus Clades OII and OI which appear to be oceanic and coastal clades, respectively.
    The ISME Journal 02/2011; 5(7):1095-107. DOI:10.1038/ismej.2010.209 · 9.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of molecular methods is altering our understanding of the microbial biosphere and the complexity of the tree of life. Here, we report a newly discovered uncultured plastid-bearing eukaryotic lineage named the rappemonads. Phylogenies using near-complete plastid ribosomal DNA (rDNA) operons demonstrate that this group represents an evolutionarily distinct lineage branching with haptophyte and cryptophyte algae. Environmental DNA sequencing revealed extensive diversity at North Atlantic, North Pacific, and European freshwater sites, suggesting a broad ecophysiology and wide habitat distribution. Quantitative PCR analyses demonstrate that the rappemonads are often rare but can form transient blooms in the Sargasso Sea, where high 16S rRNA gene copies mL(-1) were detected in late winter. This pattern is consistent with these microbes being a member of the rare biosphere, whose constituents have been proposed to play important roles under ecosystem change. Fluorescence in situ hybridization revealed that cells from this unique lineage were 6.6 ± 1.2 × 5.7 ± 1.0 μm, larger than numerically dominant open-ocean phytoplankton, and appear to contain two to four plastids. The rappemonads are unique, widespread, putatively photosynthetic algae that are absent from present-day ecosystem models and current versions of the tree of life.
    Proceedings of the National Academy of Sciences 01/2011; 108(4):1496-500. DOI:10.1073/pnas.1013337108 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The crystal structures of two homologous endopeptidases from cyanobacteria Anabaena variabilis and Nostoc punctiforme were determined at 1.05 and 1.60 A resolution, respectively, and contain a bacterial SH3-like domain (SH3b) and a ubiquitous cell-wall-associated NlpC/P60 (or CHAP) cysteine peptidase domain. The NlpC/P60 domain is a primitive, papain-like peptidase in the CA clan of cysteine peptidases with a Cys126/His176/His188 catalytic triad and a conserved catalytic core. We deduced from structure and sequence analysis, and then experimentally, that these two proteins act as gamma-D-glutamyl-L-diamino acid endopeptidases (EC 3.4.22.-). The active site is located near the interface between the SH3b and NlpC/P60 domains, where the SH3b domain may help define substrate specificity, instead of functioning as a targeting domain, so that only muropeptides with an N-terminal L-alanine can bind to the active site.
    Structure 03/2009; 17(2):303-13. DOI:10.1016/j.str.2008.12.008 · 6.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ECX21941 represents a very large family (over 600 members) of novel, ocean metagenome-specific proteins identified by clustering of the dataset from the Global Ocean Sampling expedition. The crystal structure of ECX21941 reveals unexpected similarity to Sm/LSm proteins, which are important RNA-binding proteins, despite no detectable sequence similarity. The ECX21941 protein assembles as a homopentamer in solution and in the crystal structure when expressed in Escherichia coli and represents the first pentameric structure for this Sm/LSm family of proteins, although the actual oligomeric form in vivo is currently not known. The genomic neighborhood analysis of ECX21941 and its homologs combined with sequence similarity searches suggest a cyanophage origin for this protein. The specific functions of members of this family are unknown, but our structure analysis of ECX21941 indicates nucleic acid-binding capabilities and suggests a role in RNA and/or DNA processing.
    Proteins Structure Function and Bioinformatics 01/2009; 75(2):296-307. DOI:10.1002/prot.22360 · 2.92 Impact Factor
  • Source

Publication Stats

118 Citations
93.07 Total Impact Points

Institutions

  • 2011–2015
    • Monterey Bay Aquarium Research Institute
      Moss Beach, California, United States
  • 2009
    • The Scripps Research Institute
      • Department of Cell and Molecular Biology
      La Jolla, California, United States