Are you M M Krishna Reddy?

Claim your profile

Publications (3)4.98 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Eight aerobic bacterial strains were isolated from pulp paper mill waste and screened for tolerance of kraft lignin (KL) using the nutrient enrichment technique in mineral salt media (MSM) agar plate (15 g/L) amended with different concentrations of KL (100, 200, 300, 400, 500, 600 ppm) along with 1% glucose and 0.5% peptone (w/v) as additional carbon and nitrogen sources. The strains ITRC S6 and ITRC S8 were found to have the most potential for tolerance of the highest concentration of KL. These organisms were characterized by biochemical tests and further 16S rRNA gene (rDNA) sequencing, which showed 96.5% and 95% sequence similarity of ITRC S(6) and ITRC S(8) and confirmed them as Paenibacillus sp. and Bacillus sp., respectively. KL decolorization was routinely monitored with a spectrophotometer and further confirmed by HPLC analysis. Among eight strains, ITRC S(6) and ITRC S(8) were found to degrade 500 mg/L of KL up to 47.97% and 65.58%, respectively, within 144 h of incubation in the presence of 1% glucose and 0.5% (w/v) peptone as a supplementary source of carbon and nitrogen. In the absence of glucose and peptone, these bacteria were unable to utilize KL. The analysis of lignin degradation products by GC-MS analysis revealed the formation of various acids as lignin monomers which resulted in a decrease in pH and a major change in the chromatographic profile of the bacterial degraded sample as compared to the control clear indications of biochemical modification of KL due to the bacterial ligninolytic system by ITRC S(6), namely, acetic acid, propanoic acid, butanoic acid, guaiacol, hexanoic acid, and ITRC S(8), namely acetic acid, propanoic acid, ethanedioic acid, furan carboxylic acid, 2-propanoic acid, butanoic acid, 3-acetoxybutyric acid, propanedioic acid, acetoguiacone, 1,2,3-thiadiazole, 5-carboxaldixime, 4-hydroxy-3,5-dimethoxyphenol, and dibutyl phthalate, indicating the bacterium characteristic to degrade G and S units of lignin polymer.
    The Journal of General and Applied Microbiology 02/2008; 54(6):399-407. · 0.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Eight bacterial strains were isolated on kraft lignin (KL) containing mineral salt medium (L-MSM) agar with glucose and peptone from the sludge of pulp and paper mill. Out of these, ITRC-S8 was selected for KL degradation, because of its fast growth at highest tested KL concentration and use of various lignin-related low molecular weight aromatic compounds (LMWACs) as sole source of carbon and energy. The bacterium was identified by biochemical tests as Gram-positive, rod-shaped and non-motile. Subsequent 16S rRNA gene sequencing showed 95% base sequence homology and it was identified as Bacillus sp. In batch experiments, a decrease in pH was observed initially followed by an increase till it reached an alkaline pH, which did not alter the culture growth significantly. The bacterium reduced the colour and KL content of 500 mg l(-1 )KL in MSM, in the presence of glucose and peptone, at pH 7.6, temperature 30 degrees C, agitation of 120 rpm and 6 days of incubation by 65 and 37% respectively. Significant reduction in colour and KL content in subsequent incubations is indicative of a co-metabolism mechanism, possibly due to initial utilization of added co-substrates for energy followed by utilization of KL as a co-metabolic. The degradation of KL by bacterium was confirmed by GC-MS analysis indicating formation of several LMWACs such as t-cinnamic acid, 3, 4, 5-trimethoxy benzaldehyde and ferulic acid as degradation products, which were not present in the control (uninoculated) sample. This favours the idea of biochemical modification of the KL polymer to a single monomer unit.
    Biodegradation 01/2008; 18(6):783-92. · 2.17 Impact Factor
  • Abhay Raj, M.M. Krishna Reddy, Ram Chandra
    [Show abstract] [Hide abstract]
    ABSTRACT: Three bacterial strains identified as Paenibacillus sp., Aneurinibacillus aneurinilyticus and Bacillus sp. have been shown to decolourise kraft lignin in 6 days of incubation. The release of low molecular weight aromatic compounds by these bacterial strains during degradation of kraft lignin was analysed by GC–MS analysis. The total ion chromatograph (TIC) of ethyl acetate extract from kraft lignin sample inoculated by Paenibacillus sp. was similar to control except some minor changes in the chromatographic profile indicating incapability of this bacterium to modify kraft lignin. On the other hand the TIC of ethyl acetate extract from kraft lignin inoculated by A. aneurinilyticus and Bacillus sp. caused formation of several aromatic lignin-related compound that were not present in the extract of control. The compounds identified in extract of the sample degraded by A. aneurinilyticus were guaiacol, acetoguiacone, gallic acid and ferulic acid while t-cinnamic acid, 3,4,5 trimethoxy benzaldehyde, and ferulic acid by Bacillus sp. indicating oxidization of coniferylic (G units) and sinapylic (S units) alcohol of lignin polymer. Differences between the identified compounds from different bacterial treatment were strain-specific. Among the identified aromatic compounds, ferulic acid and 3,4,5-trimethoxy benzaldehyde could be useful to the industry of preservatives, aromas and perfumes.
    International Biodeterioration & Biodegradation 06/2007; 59(4):292-296. · 2.06 Impact Factor