Anna Gasparri

University of Milan, Milano, Lombardy, Italy

Are you Anna Gasparri?

Claim your profile

Publications (17)116.28 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Angiogenesis, the formation of blood vessels from pre-existing vasculature, is regulated by a complex interplay of anti- and pro-angiogenic factors. We found that physiological levels of circulating chromogranin A (CgA), a protein secreted by the neuroendocrine system, can inhibit angiogenesis in various in vitro and in vivo experimental models. Structure-activity studies showed that a functional anti-angiogenic site is located in the C-terminal region, whereas a latent anti-angiogenic site, activated by cleavage of Q76-K77 bond, is present in the N-terminal domain. Cleavage of CgA by thrombin abrogated its anti-angiogenic activity and generated fragments (lacking the C-terminal region) endowed of potent pro-angiogenic activity. Hematological studies showed that biologically relevant levels of forms of full-length CgA and CgA1-76 (anti-angiogenic) and lower levels of fragments lacking the C-terminal region (pro-angiogenic) are present in circulation in normal subjects. Blood coagulation caused, in a thrombin-dependent manner, almost complete conversion of CgA into fragments lacking the C-terminal region. These results suggest that the CgA-related circulating polypeptides form a balance of anti- and pro-angiogenic factors tightly regulated by proteolysis. Thrombin-induced alteration of this balance could provide a novel mechanism for triggering angiogenesis in pathophysiological conditions characterized by pro-thrombin activation.
    Blood 11/2012; · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new cyclic peptide containing the isoDGR motif that, after coupling to albumin, selectively binds αvβ3, an integrin overexpressed in the tumor vasculature. IsoDGR-tagged albumin binds tumor vessels and can be exploited as a carrier for the preparation of tumor vasculature-selective nanomedicines, such as gold nanoparticles (Au) carrying tumor necrosis factor α (TNF), a potent vascular damaging agent.
    Small 11/2012; · 7.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chromogranin A (CgA), a secretory protein expressed by many neuroendocrine cells, neurons, cardiomyocytes, and keratinocytes, is the precursor of various peptides that regulate the carbohydrate/lipid metabolism and the cardiovascular system. We have found that CgA, locally administered to injured mice, can accelerate keratinocyte proliferation and wound healing. This biological activity was abolished by the Asp(45)Glu mutation. CgA and its N-terminal fragments, but not the corresponding Asp(45)Glu mutants, could selectively recognize the αvβ6-integrin on keratinocytes (a cell-adhesion receptor that is up-regulated during wound healing) and regulate keratinocyte adhesion, proliferation, and migration. No binding was observed to other integrins such as αvβ3, αvβ5, αvβ8, α5β1, α1β1, α3β1, α6β4, α6β7 and α9β1. Structure-activity studies showed that the entire CgA(39-63) region is crucial for αvβ6 recognition (K(i) = 7 nM). This region contains an RGD site (residues CgA(43-45)) followed by an amphipathic α-helix (residues CgA(47-63)), both crucial for binding affinity and selectivity. These results suggest that the interaction of the RGD/α-helix motif of CgA with αvβ6 regulates keratinocyte physiology in wound healing.
    Cellular and Molecular Life Sciences CMLS 03/2012; 69(16):2791-803. · 5.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vasostatin-1 (VS-1), the N-terminal fragment of chromogranin A (CgA), decreases the permeability of endothelial cells in vitro and in vivo. Here, we investigated whether a similar effect could be observed also on intestinal epithelial cells (IECs) in vitro and whether VS-1 could have favorable effects on animal models of acute or chronic colitis, which are characterized by increased permeability of the intestinal epithelium. In vitro, VS-1 was tested on IEC monolayers showing increased permeability, on mechanically injured IEC monolayers, and on the production of the chemokine IL-8/KC by lipopolysaccharide (LPS)-stimulated IECs. In vivo, VS-1 was tested in animal models of dextran sodium salt (DSS)-induced acute or chronic colitis. In vitro, VS-1 inhibited increased permeability of IECs induced by interferon-γ and tumor necrosis factor-α. Moreover, VS-1 promoted healing of mechanically injured IEC monolayers, most likely through stimulation of cell migration, rather than cell proliferation. Eventually, VS-1 inhibited LPS-induced production of IL-8. In vivo, VS-1 exerted protective effects in animal models of acute or chronic colitis upon oral, but not systemic administration. VS-1 is therapeutically active in animal models of acute or chronic, DSS-induced colitis. The mechanisms underlying this effect are likely to be multiple, and may include inhibition of enhanced intestinal permeability, repair of injured intestinal mucosae, and inhibition of the production of IL-8/KC and possibly other inflammatory cytokines.
    Digestive Diseases and Sciences 01/2012; 57(5):1227-37. · 2.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NGR-TNF is a derivative of TNF-α that targets tumor blood vessels and enhances penetration of chemotherapeutic drugs. Because of this property, NGR-TNF is being tested in combination with chemotherapy in various phase II and III clinical trials. Here we report that chromogranin A (CgA), a protein present in variable amounts in the blood of normal subjects and cancer patients, inhibits the synergism of NGR-TNF with doxorubicin and melphalan in mouse models of lymphoma and melanoma. Pathophysiologically relevant levels of circulating CgA blocked NGR-TNF-induced drug penetration by enhancing endothelial barrier function and reducing drug extravasation in tumors. Mechanistic investigations done in endothelial cell monolayers in vitro showed that CgA inhibited phosphorylation of p38 MAP kinase, disassembly of VE-cadherin-dependent adherence junctions, paracellular macromolecule transport, and NGR-TNF-induced drug permeability. In this system, the N-terminal fragment of CgA known as vasostatin-1 also inhibited drug penetration and NGR-TNF synergism. Together, our results suggest that increased levels of circulating CgA and its fragments, as it may occur in certain cancer patients with nonneuroendocrine tumors, may reduce drug delivery to tumor cells particularly as induced by NGR-TNF. Measuring CgA and its fragments may assist the selection of patients that can respond better to NGR-TNF/chemotherapy combinations in clinical trials.
    Cancer Research 08/2011; 71(17):5881-90. · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Various NGR-containing peptides have been exploited for targeted delivery of drugs to CD13-positive tumor neovasculature. Recent studies have shown that compounds containing this motif can rapidly deamidate and generate isoaspartate-glycine-arginine (isoDGR), a ligand of alphavbeta3-integrin that can be also exploited for drug delivery to tumors. We have investigated the role of NGR and isoDGR peptide scaffolds on their biochemical and biological properties. Peptides containing the cyclic CNGRC sequence could bind CD13-positive endothelial cells more efficiently than those containing linear GNGRG. Peptide degradation studies showed that cyclic peptides mostly undergo NGR-to-isoDGR transition and CD13/integrin switching, whereas linear peptides mainly undergo degradation reactions involving the alpha-amino group, which generate non-functional six/seven-membered ring compounds, unable to bind alphavbeta3, and small amount of isoDGR. Structure-activity studies showed that cyclic isoDGR could bind alphavbeta3 with an affinity >100-fold higher than that of linear isoDGR and inhibited endothelial cell adhesion and tumor growth more efficiently. Cyclic isoDGR could also bind other integrins (alphavbeta5, alphavbeta6, alphavbeta8, and alpha5beta1), although with 10-100-fold lower affinity. Peptide linearization caused loss of affinity for all integrins and loss of specificity, whereas alpha-amino group acetylation increased the affinity for all tested integrins, but caused loss of specificity. These results highlight the critical role of molecular scaffold on the biological properties of NGR/isoDGR peptides. These findings may have important implications for the design and development of anticancer drugs or tumor neovasculature-imaging compounds, and for the potential function of different NGR/isoDGR sites in natural proteins.
    Journal of Biological Chemistry 03/2010; 285(12):9114-23. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblast adhesion can be modulated by proteins released by neuroendocrine cells and neurons, such as chromogranin A (CgA) and its N-terminal fragment vasostatin-1 (VS-1, CgA(1-78)). We have investigated the mechanisms of the interaction of VS-1 with fibroblasts and of its pro-adhesive activity and have found that the proadhesive activity of VS-1 relies on its interaction with the fibroblast membrane via a phospholipid-binding amphipathic alpha-helix located within residues 47-66, as well as on the interaction of the adjacent C-terminal region 67-78, which is structurally similar to ezrin-radixin-moesin-binding phosphoprotein 50 (a membrane-cytoskeleton adapter protein), with other cellular components critical for the regulation of cell cytoskeleton.
    Cellular and Molecular Life Sciences CMLS 03/2010; 67(12):2107-18. · 5.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Targeted delivery of IFNgamma to tumors has been achieved by fusing this cytokine with GCNGRC, a tumor neovasculature homing peptide. Although the therapeutic efficacy of this protein (called IFNgamma-NGR) in animal models is greater than that of IFNgamma, frequent administrations of IFNgamma-NGR may result in lower efficacy and tumor resistance. We investigated the role of indoleamine 2,3-dioxygenase (IDO), an IFNgamma-inducible enzyme that may down-regulate T cells by affecting local tryptophan catabolism in tumor resistance to repeated treatments with IFNgamma-NGR. The study was carried out in immunocompetent mice and in nu/nu mice bearing RMA lymphoma, B16F melanoma, or WEHI-164 fibrosarcoma and in vitro using cultured tumor cells. IDO activity was increased in lymphoma homogenates after multiple treatments with IFNgamma-NGR but not after a single treatment. Coadministration of 1-methyl-tryptophan, an inhibitor of IDO, increased tumor responses to multiple treatments in the lymphoma, melanoma, and fibrosarcoma models. No synergism between IFNgamma-NGR and 1-methyl-tryptophan was observed in vitro in tumor cell proliferation assays or in nu/nu tumor-bearing mice, suggesting that the antitumor effect was host mediated. We conclude that IDO is critically involved in tumor resistance to repeated treatments with IFNgamma-NGR, likely causing excessive stimulation of tryptophan catabolism and inhibiting antitumor immune mechanisms. Coadministration of IFNgamma-NGR with IDO inhibitors could represent a new strategy for increasing its antitumor activity.
    Molecular Cancer Therapeutics 01/2009; 7(12):3859-66. · 5.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Asparagine deamidation in peptides or in fibronectin fragments containing the asparagine-glycine-arginine sequence generates isoaspartate-glycine-arginine (isoDGR), a new alphavbeta3 integrin-binding motif. Because alphavbeta3 is expressed in angiogenic vessels, we hypothesized that isoDGR-containing peptides could be exploited as ligands for targeted delivery of drugs to tumor neovasculature. We found that a cyclic CisoDGRC peptide coupled to fluorescent nanoparticles (quantum dots) could bind alphavbeta3 integrin and colocalize with anti-CD31, anti-alphavbeta3, and anti-alpha5beta1 antibodies in human renal cell carcinoma tissue sections, indicating that this peptide could efficiently recognize endothelial cells of angiogenic vessels. Using CisoDGRC fused to tumor necrosis factor alpha (TNF) we observed that ultralow doses (1-10 pg) of this product (called isoDGR-TNF), but not of TNF or CDGRC-TNF fusion protein, were sufficient to induce antitumor effects when administered alone or in combination with chemotherapy to tumor-bearing mice. The antitumor activity of isoDGR-TNF was efficiently inhibited by coadministration with an excess of free CisoDGRC, as expected for ligand-directed targeting mechanisms. These results suggest that isoDGR is a novel tumor vasculature-targeting motif. Peptides containing isoDGR could be exploited as ligands for targeted delivery of drugs, imaging agents, or other compounds to tumor vasculature.
    Cancer Research 10/2008; 68(17):7073-82. · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-dose endothelial-monocyte activating polypeptide II (EMAP-II), a tumor-derived antiangiogenic cytokine, can sensitize tumor vasculature to the damaging activity of high-dose tumor necrosis factor (TNF)-alpha. However, this combination cannot be used for systemic treatment of patients because of prohibitive toxicity. We have found that this limitation can be overcome by combining a TNF-targeting strategy with the use of ultra low-dose EMAP-II. Coadministration of 0.1 ng of EMAP-II and 0.1 ng of CNGRCG-TNF (NGR-TNF), a peptide-TNF conjugate able to target tumor blood vessels, inhibited lymphoma and melanoma growth in mice, with no evidence of toxicity. This drug combination induced endothelial cell apoptosis in vivo and, at later time points, caused reduction of vessel density and massive apoptosis of tumor cells. Ligand-directed targeting of TNF was critical because the combination of nontargeted TNF with EMAP-II was inactive in these murine models. The synergism was progressively lost when the dose of EMAP-II was increased in the nanogram to microgram range, supporting the concept that the use of low-dose EMAP-II is critical. Studies on the mechanism of this paradoxical behavior showed that EMAP-II doses >1 ng induce the release of soluble TNF receptor 1 in circulation, a strong counter-regulatory inhibitor of TNF. Tumor vascular targeting with extremely low amounts of these cytokines may represent a new strategy for cancer treatment.
    Cancer Research 02/2008; 68(4):1154-61. · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Subnanogram doses of NGR-tumor necrosis factor (TNF), a TNF-alpha derivative able to target tumor neovessels, can enhance the antitumor activity of doxorubicin and melphalan in murine models. We have examined the antitumor activity of NGR-TNF in combination with various chemotherapeutic drugs acting via different mechanisms, including, besides doxorubicin and melphalan, cisplatin, paclitaxel, and gemcitabine. Chemotherapeutic drugs were tested alone and in combination with NGR-TNF (0.1 ng) in murine lymphoma, fibrosarcoma, and mammary adenocarcinoma models. Different administration schedules have been tested and the effects on tumor growth, animal weight, tumor perfusion, and cell cytotoxicity have been investigated. Pretreatment with NGR-TNF enhanced the response to all these drugs although to a different extent. The increased efficacy was not accompanied by increased toxicity at least as judged from the loss of animal weight. The synergistic effect was transient, maximal synergism being observed with a 2-hour delay between NGR-TNF and drug administrations in all models and with all drugs tested. NGR-TNF did not increase the in vitro cytotoxicity of chemotherapeutic drugs against tumor cells, suggesting that the in vivo synergism depends on NGR-TNF effects on host cells rather than on tumor cells. Targeted delivery of low doses of NGR-TNF to the tumor vasculature can increase the efficacy of various drugs acting via different mechanisms. Optimal administration schedule requires 2 hours of pretreatment with NGR-TNF independently from the mechanism of drug cytotoxicity. This work could provide important information for designing clinical studies with NGR-TNF in combination with chemotherapeutic drugs.
    Clinical Cancer Research 02/2006; 12(1):175-82. · 7.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Because of its immunomodulatory and anticancer activities, IFNgamma has been used as an anticancer drug in several clinical studies, unfortunately with modest results. Attempts to increase the response by increasing the dose or by repeated continuous injection often resulted in lower efficacy, likely due to counterregulatory effects. We show here that targeted delivery of low doses of IFNgamma to CD13, a marker of angiogenic vessels, can overcome major counterregulatory mechanisms and delay tumor growth in two murine models that respond poorly to IFNgamma. Tumor vascular targeting was achieved by coupling IFNgamma to GCNGRC, a CD13 ligand, by genetic engineering technology. The dose-response curve was bell-shaped. Maximal effects were induced with a dose of 0.005 microg/kg, about 500-fold lower than the dose used in patients. Nontargeted IFNgamma induced little or no effects over a range of 0.003 to 250 microg/kg. Studies on the mechanism of action showed that low doses of targeted IFNgamma could activate tumor necrosis factor (TNF)-dependent antitumor mechanisms, whereas high doses of either targeted or nontargeted IFNgamma induced soluble TNF-receptor shedding in circulation, a known counterregulatory mechanism of TNF activity. These findings suggest that antitumor activity and counterregulatory mechanisms could be uncoupled by tumor vascular targeting with extremely low doses of IFNgamma.
    Cancer Research 05/2005; 65(7):2906-13. · 8.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NGR-TNF is a derivative of TNF-alpha, consisting of TNF fused to CNGRCG, a tumor vasculature-targeting peptide. Previous studies showed that NGR-TNF can exert synergistic antitumor effects with doxorubicin and with other chemotherapeutic drugs in murine models. In this study, we have investigated the role of endogenous IFN-gamma on the antitumor activity of NGR-TNF in combination with doxorubicin. The study was carried out using murine B16F1 melanoma and TS/A mammary adenocarcinoma implanted subcutaneously in (a) immunocompetent mice, (b) athymic nude mice, and (c) IFN-gamma-knockout mice. Synergism between NGR-TNF and doxorubicin was observed in immunocompetent mice but not in nude or IFN-gamma-knockout mice. Preadministration of a neutralizing anti-IFN-gamma antibody to immunocompetent mice inhibited the NGR-TNF/doxorubicin synergism, whereas administration of IFN-gamma to nude and to IFN-gamma-knockout mice restored the synergistic activity. The synergism in nude mice was restored also by transfecting tumor cells with the IFN-gamma cDNA. Administration of NGR-TNF in combination with IFN-gamma to nude mice, but not of NGR-TNF alone, doubled the penetration of doxorubicin in TS/A tumors. These findings point to a crucial role for locally produced IFN-gamma in tumor vascular targeting with NGR-TNF and doxorubicin. Finally, addition of IFN-gamma to the treatment of immunocompetent mice with NGR-TNF/doxorubicin induced only modest improvement in response, suggesting that exogenous IFN-gamma can improve the therapeutic activity of these drugs only in case of suboptimal production of endogenous IFN-gamma.
    Cancer Research 11/2004; 64(19):7150-5. · 8.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vasostatins (VS) are vasoinhibitory peptides derived from the N-terminal domain of chromogranin A, a secretory protein present in the electron-dense granules of many neuroendocrine cells. In this work we describe a method for the production in Escherichia coli of large amounts of recombinant vasostatins, corresponding to chromogranin A residues 1–78 (VS-I), and 1–115 (VS-2), and the use of these materials for structure characterisation. The masses of both products were close to the expected values, by SDS/PAGE and mass spectrometry analysis. However, their hydrodynamic behaviours in size-exclusion chromatography corresponded to that of proteins with a larger size. SDSPACE analysis of VS-1 and VS-2 after cross-linking with disuccinimidyl suberate indicated that both polypeptides form dimers. VS-2 was almost entirely dimeric at > 4 μM, but rapidly converted to monomer after dilution to 70 nM. The rapid dimer-monomer transition of VS-2 after dilution could be part of a mechanism for regulating its activity and localising its action. Immunological studies of VS-1 have shown that residues 37–70 constitute a highly antigenic region characterised by an abundance of linear epitopes efficiently mimicked by synthetic peptides. The recombinant products and the immunological reagents developed in this work could be valuable tools for further investigating the structure and the function of chromogranin A and its fragments.
    European Journal of Biochemistry. 07/2004; 248(3):692 - 699.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the impressive results obtained in animal models, the clinical use of tumor necrosis factor-alpha (TNF) as an anticancer drug is limited by severe toxicity. We have shown previously that targeted delivery of TNF to aminopeptidase N (CD13), a marker of angiogenic vessels, improved the therapeutic index of this cytokine in tumor-bearing mice. To assess whether the vascular-targeting approach could be extended to other markers of tumor blood vessels, in this work, we have fused TNF with the ACDCRGDCFCG peptide, a ligand of alpha(V) integrins by recombinant DNA technology. We have found that subnanogram doses of this conjugate are sufficient to induce antitumor effects in tumor-bearing mice when combined with melphalan, a chemotherapeutic drug. Cell adhesion assays and competitive binding experiments with anti-integrin antibodies showed that the Arg-Gly-Asp moiety interacts with cell adhesion receptors, including alpha(V)beta(3) integrin, as originally postulated. In addition, ACGDRGDCFCG-mouse TNF conjugate induced cytotoxic effects in standard cytolytic assays, implying that ACGDRGDCFCG-mouse TNF conjugate can also bind TNF receptors and trigger death signals. These results indicate that coupling TNF with alpha(V) integrin ligands improves its antineoplastic activity and supports the concept that vascular targeting is a strategy potentially applicable to different endothelial markers, not limited to CD13.
    Cancer Research 02/2004; 64(2):565-71. · 8.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cyclic and linear peptides containing the Asn-Gly-Arg (NGR) motif have proven useful for delivering various anti-tumor compounds and viral particles to tumor vessels. We have investigated the role of cyclic constraints on the structure and tumor-homing properties of NGR peptides using tumor necrosis factor-alpha (TNF) derivatives containing disulfide-bridged (CNGRC-TNF) and linear (GNGRG-TNF) NGR domains. Experiments carried out in animal models showed that both GNGRG and CNGRC can target TNF to tumors. However, the anti-tumor activity of CNGRC-TNF was >10-fold higher than that of GNGRG-TNF. Molecular dynamic simulation of cyclic CNGRC showed the presence of a bend geometry involving residues Gly(3)-Arg(4). Molecular dynamic simulation of the same peptide without disulfide constraints showed that the most populated and thermodynamically favored configuration is characterized by the presence of a beta-turn involving residues Gly(3)-Arg(4) and hydrogen bonding interactions between the backbone atoms of Asn(2) and Cys(5). These results suggest that the NGR motif has a strong propensity to form beta-turn in linear peptides and may explain the finding that GNGRG peptide can target TNF to tumors, albeit to a lower extent than CNGRC. The disulfide bridge constraint is critical for stabilizing the bent conformation and for increasing the tumor targeting efficiency.
    Journal of Biological Chemistry 12/2002; 277(49):47891-7. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tumor targeting with immunomodulatory molecules is an attractive strategy to enhance the host's antitumor response. Expression of CD80 (B7-1) and CD86 (B7-2) costimulatory molecules in tumor cells has proven to be an efficient way to enhance their immunogenicity. Here, we studied the effects of tumor targeting with biotinylated recombinant soluble B7-1- and B7-2 immunoglobulin G molecules (bio-B7-IgG) using a pretargeting approach based on the sequential use of a biotinylated antitumor monoclonal antibody and avidin. Mouse RMA T-lymphoma cells bearing either bio-B7-1-IgG or bio-B7-2-IgG on their surface prime in vitro naive CD8+ CTLs, which are highly effective in adoptive immunotherapy, and induce therapeutic immunity when injected in tumor-bearing animals. In vivo targeting of established RMA tumors with bio-B7-IgG either cures tumor-bearing mice or significantly prolongs their survival. The antitumor response induced by targeted bio-B7-IgG depends on both CD4+ and CD8+ T cells. Moreover, tumor targeting with bio-B7-IgG in vivo is critical for both expansion in lymphoid organs and mobilization into the tumor of tumor-specific CD8+ CTLs. When targeting is performed on poorly immunogenic TS/A mammary adenocarcinoma, only bio-B7-1-IgG primes naive CTLs in vitro and cures or significantly prolongs the survival of tumor-bearing mice in vivo, confirming that the two costimulatory molecules are not redundant with this tumor. Altogether, these data suggest that tumor avidination and targeting with soluble bio-B7-IgG may represent a promising strategy to enhance the antitumor response in the host.
    Cancer Research 07/1999; 59(11):2650-6. · 8.65 Impact Factor