R J Colonno

Bristol-Myers Squibb, New York City, New York, United States

Are you R J Colonno?

Claim your profile

Publications (143)1004.11 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: BMS-791325 is an allosteric inhibitor that binds to thumb site 1 of the hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase. BMS-791325 inhibits recombinant NS5B proteins from HCV genotypes 1, 3, 4, and 5 at 50% inhibitory concentrations (IC50) below 28 nM. In cell culture, BMS-791325 inhibited replication of HCV subgenomic replicons representing genotypes 1a and 1b at 50% effective concentrations (EC50) of 3 nM and 6 nM, respectively, with similar (3-18 nM) values for genotypes 3a, 4a, and 5a. Potency against genotype 6a showed more variability (9-125 nM) and activity was weaker against genotype 2 (EC50 87-925 nM). Specificity was demonstrated by the absence of activity (EC50s >4 μM) against a panel of mammalian viruses and cytotoxic concentrations (50%) were >3,000-fold above the HCV EC50. Resistance substitutions selected by BMS-791325 in genotype 1 replicons mostly mapped to a single site, NS5B amino acid 495 (P495A/S/L/T). Additive or synergistic activity was observed in combination studies using BMS-791325 with alfa interferon plus ribavirin, inhibitors of NS3 protease or NS5A, and other classes of NS5B inhibitor (palm site 2-binding or nucleoside analogs). Plasma and liver exposures in vivo in several animal species indicated that BMS-791325 has a hepatotropic disposition (liver-to-plasma ratios ranging from 1.6- to 60-fold across species). Twenty-four h postdose, liver exposures across all species tested were ≥10-fold above the inhibitor EC50s observed with HCV genotype-1 replicons. These findings support the evaluation of BMS-791325 in combination regimens for the treatment of HCV. Phase 3 studies are currently ongoing.
    Antimicrobial Agents and Chemotherapy 04/2014; · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of asunaprevir (BMS-650032, 24) is described. This tripeptidic acylsulfonamide inhibitor of the NS3/4A enzyme is currently in phase III clinical trials for the treatment of hepatitis C virus infection. The discovery of 24 was enabled by employing an isolated rabbit heart model to screen for the cardiovascular (CV) liabilities (changes to HR and SNRT) that were responsible for the discontinuation of an earlier lead from this chemical series, BMS-605339 (1), from clinical trials. The structure-activity relationships (SARs) developed with respect to CV effects established that small structural changes to the P2* subsite of the molecule had a significant impact on the CV profile of a given compound. The antiviral activity, preclincial PK profile and toxicology studies in rat and dog supported clinical development of BMS-650032 (24).
    Journal of Medicinal Chemistry 02/2014; · 5.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of BMS-605339 (35), a tripeptidic inhibitor of the NS3/4A enzyme, is described. This compound incorporates a cyclopropylacylsulfonamide moiety that was designed to improve the potency of carboxylic acid prototypes through the introduction of favorable nonbonding interactions within the S1' site of the protease. The identification of 35 was enabled through the optimization and balance of critical properties including potency and pharmacokinetics (PK). This was achieved through modulation of the P2* subsite of the inhibitor which identified the isoquinoline ring system as a key template for improving PK properties with further optimization achieved through functionalization. A methoxy moiety at the C6 position of this isoquinoline ring system proved to be optimal with respect to potency and PK, thus providing the clinical compound 35 which demonstrated antiviral activity in HCV-infected patients.
    Journal of Medicinal Chemistry 02/2014; · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The biphenyl derivatives 2 and 3 are prototypes of a novel class of NS5A replication complex inhibitors that demonstrate high inhibitory potency toward a panel of clinically relevant HCV strains encompassing genotypes 1-6. However, these compounds exhibit poor systemic exposure in rat pharmacokinetic studies after oral dosing. The structure-activity relationship investigations that improved the exposure properties of the parent bis-phenylimidazole chemotype, culminating in the identification of the highly potent NS5A replication complex inhibitor daclatasvir (33) are described. An element critical to success was the realization that the arylglycine cap of 2 could be replaced with an alkylglycine derivative and still maintain the high inhibitory potency of the series if accompanied with a stereoinversion, a finding that enabled a rapid optimization of exposure properties. Compound 33 had EC50 values of 50 and 9 pM toward genotype-1a and -1b replicons, respectively, and oral bioavailabilities of 38-108% in preclinical species. Compound 33 provided clinical proof-of-concept for the NS5A replication complex inhibitor class, and regulatory approval to market it with the NS3/4A protease inhibitor asunaprevir for the treatment of HCV genotype-1b infection has recently been sought in Japan.
    Journal of Medicinal Chemistry 02/2014; · 5.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of highly potent HIV-1 attachment inhibitors with a 4-fluoro-6-azaindole core heterocycle that target the viral envelope protein gp120 has been prepared. Substitution in the 7-position of the azaindole core with amides (12a,b), C-linked heterocycles (12c-l) and N-linked heterocycles (12m-u) provided compounds with sub-nanomolar potency in a pseudotype infectivity assay and good pharmacokinetic profiles in vivo. A predictive model was developed from the initial SAR in which the potency of the analogs correlated with the ability of the substituent in the 7-position of the azaindole to adopt a coplanar conformation by either forming internal hydrogen bonds or avoiding repulsive substitution patterns. 1-(4-Benzoyl-piperazin-1-yl)-2-(4-fluoro-7-[1,2,3]triazol-1-yl-1H-pyrrolo[2,3-c]pyridin-3-yl)-ethane-1,2-dione (BMS-585248, 12m) exhibited much improved in vitro potency and pharmacokinetic properties than the previous clinical candidate BMS-488043 (1). The predicted low clearance in humans, modest protein binding and good potency in the presence of 40% human serum for 12m led to its selection for human clinical studies.
    Journal of Medicinal Chemistry 01/2013; · 5.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Asunaprevir (ASV; BMS-650032) is a hepatitis C virus (HCV) NS3 protease inhibitor that has demonstrated efficacy in patients chronically infected with HCV genotype 1 when combined with alfa interferon and/or the NS5A replication complex inhibitor daclatasvir. ASV competitively binds to the NS3/4A protease complex, with K(i) values of 0.4 and 0.24 nM against recombinant enzymes representing genotypes 1a (H77) and 1b (J4L6S), respectively. Selectivity was demonstrated by the absence of any significant activity against the closely related GB virus-B NS3 protease and a panel of human serine or cysteine proteases. In cell culture, ASV inhibited replication of HCV replicons representing genotypes 1 and 4, with 50% effective concentrations (EC(50)s) ranging from 1 to 4 nM, and had weaker activity against genotypes 2 and 3 (EC(50), 67 to 1,162 nM). Selectivity was again demonstrated by the absence of activity (EC(50), >12 μM) against a panel of other RNA viruses. ASV exhibited additive or synergistic activity in combination studies with alfa interferon, ribavirin, and/or inhibitors specifically targeting NS5A or NS5B. Plasma and tissue exposures in vivo in several animal species indicated that ASV displayed a hepatotropic disposition (liver-to-plasma ratios ranging from 40- to 359-fold across species). Twenty-four hours postdose, liver exposures across all species tested were ≥110-fold above the inhibitor EC(50)s observed with HCV genotype-1 replicons. Based on these virologic and exposure properties, ASV holds promise for future utility in a combination with other anti-HCV agents in the treatment of HCV-infected patients.
    Antimicrobial Agents and Chemotherapy 08/2012; 56(10):5387-96. · 4.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BMS-663749, a phosphonooxymethyl prodrug 4 of the HIV-1 attachment inhibitor 2-(4-benzoyl-1-piperazinyl)-1-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)-2-oxoethanone (BMS-488043) (2) was prepared and profiled in a variety of preclinical in vitro and in vivo models designed to assess its ability to deliver parent drug following oral administration. The data showed that prodrug 4 had excellent potential to significantly reduce dissolution rate-limited absorption following oral dosing in humans. Clinical studies in normal healthy subjects confirmed the potential of 4, revealing that the prodrug significantly increased both the AUC and C(max) of 2 compared to a solid capsule formulation containing the parent drug upon dose escalation. These data provided guidance for further efforts to obtain an effective HIV-1 attachment inhibitor.
    Journal of Medicinal Chemistry 03/2012; 55(5):2048-56. · 5.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Attachment inhibitors (AI) are a novel class of HIV-1 antivirals, with little information available on clinical resistance. BMS-488043 is an orally bioavailable AI that binds to gp120 of HIV-1 and abrogates its binding to CD4(+) lymphocytes. A clinical proof-of-concept study of the AI BMS-488043, administered as monotherapy for 8 days, demonstrated significant viral load reductions. In order to examine the effects of AI monotherapy on HIV-1 sensitivity, phenotypic sensitivity assessment of baseline and postdosing (day 8) samples was performed. These analyses revealed that four subjects had emergent phenotypic resistance (a 50% effective concentration [EC(50)] >10-fold greater than the baseline value) and four had high baseline EC(50)s (>200 nM). Population sequencing and sequence determination of cloned envelope genes uncovered five gp120 mutations at four loci (V68A, L116I, S375I/N, and M426L) associated with BMS-488043 resistance. Substitution at the 375 locus, located near the CD4 binding pocket, was the most common (maintained in 5/8 subjects at day 8). The five substitutions were evaluated for their effects on AI sensitivity through reverse genetics in functional envelopes, confirming their role in decreasing sensitivity to the drug. Additional analyses revealed that these substitutions did not alter sensitivity to other HIV-1 entry inhibitors. Thus, our studies demonstrate that although the majority of the subjects' viruses maintained sensitivity to BMS-488043, substitutions can be selected that decrease HIV-1 susceptibility to the AI. Most importantly, the substitutions described here are not associated with resistance to other approved antiretrovirals, and therefore, attachment inhibitors could complement the current arsenal of anti-HIV agents.
    Antimicrobial Agents and Chemotherapy 11/2010; 55(2):729-37. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BMS-488043 is a novel and unique oral small-molecule inhibitor of the attachment of human immunodeficiency virus type 1 (HIV-1) to CD4(+) lymphocytes. The antiviral activity, pharmacokinetics, viral susceptibility, and safety of BMS-488043 were evaluated in an 8-day monotherapy trial. Thirty HIV-1-infected study subjects were randomly assigned to sequential, safety-guided dose panels of 800 and 1,800 mg BMS-488043 or a matched placebo in a 4:1 ratio, and the drug was administered every 12 h with a high-fat meal for 7 days and on the morning of day 8. Dose-related, albeit less-than-dose-proportional, increases in plasma BMS-488043 concentrations were observed. Mean plasma HIV-1 RNA decreases from the baseline for the BMS-488043 800- and 1,800-mg dose groups on day 8 were 0.72 and 0.96 log(10) copies/ml, respectively, compared with 0.02 log(10) copies/ml for the placebo group. A lower baseline BMS-488043 50% effective concentration (EC(50)) in the active-treatment groups was predictive of a greater antiviral response. Although absolute drug exposure was not associated with an antiviral response, the trough concentration (C(trough)), adjusted by the baseline EC(50) (C(trough)/EC(50)), was associated with antiviral activity. During dosing, four subjects experienced >10-fold reductions in viral susceptibility to BMS-488043, providing further support of the direct antiviral mechanism of BMS-488043. BMS-488043 was generally safe and well tolerated. These results suggest that further development of this novel class of oral HIV-1 attachment inhibitors is warranted.
    Antimicrobial Agents and Chemotherapy 11/2010; 55(2):722-8. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Treatment with HIV attachment inhibitors (AIs) can select for escape mutants throughout the viral envelope. We report on three such mutations: F423Y (gp120 CD4 binding pocket) and I595F and K655E (gp41 ectodomain). Each displayed decreased sensitivity to the AI BMS-488043 and earlier generation AIs, along with increased sensitivity to the broadly neutralizing antibodies 2F5 and 4E10, without affecting the rate of viral entry or sensitivity to the entry inhibitors AMD-3100 and Enfuvirtide. We also observed that I595F did not substantially increase envelope sensitivity to HIV-infected patient sera. Based on these observations, we propose that although F423Y, I595F and K655E may all affect the presentation of the 2F5 and 4E10 epitopes, natural immune mimicry is rare only for the I595F effect. Thus, it seems that in addition to restricting AI resistance development, incorporation of I595F into an appropriate vehicle could elicit a novel antiviral response to improve vaccine efficacy.
    Virology 07/2010; 402(2):256-61. · 3.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The worldwide prevalence of chronic hepatitis C virus (HCV) infection is estimated to be approaching 200 million people. Current therapy relies upon a combination of pegylated interferon-alpha and ribavirin, a poorly tolerated regimen typically associated with less than 50% sustained virological response rate in those infected with genotype 1 virus. The development of direct-acting antiviral agents to treat HCV has focused predominantly on inhibitors of the viral enzymes NS3 protease and the RNA-dependent RNA polymerase NS5B. Here we describe the profile of BMS-790052, a small molecule inhibitor of the HCV NS5A protein that exhibits picomolar half-maximum effective concentrations (EC(50)) towards replicons expressing a broad range of HCV genotypes and the JFH-1 genotype 2a infectious virus in cell culture. In a phase I clinical trial in patients chronically infected with HCV, administration of a single 100-mg dose of BMS-790052 was associated with a 3.3 log(10) reduction in mean viral load measured 24 h post-dose that was sustained for an additional 120 h in two patients infected with genotype 1b virus. Genotypic analysis of samples taken at baseline, 24 and 144 h post-dose revealed that the major HCV variants observed had substitutions at amino-acid positions identified using the in vitro replicon system. These results provide the first clinical validation of an inhibitor of HCV NS5A, a protein with no known enzymatic function, as an approach to the suppression of virus replication that offers potential as part of a therapeutic regimen based on combinations of HCV inhibitors.
    Nature 05/2010; 465(7294):96-100. · 38.60 Impact Factor
  • Source
    Bioorganic & Medicinal Chemistry Letters 02/2010; 20(4):1460. · 2.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Entecavir (ETV) is a deoxyguanosine analog competitive inhibitor of hepatitis B virus (HBV) polymerase that exhibits delayed chain termination of HBV DNA. A high barrier to entecavir-resistance (ETVr) is observed clinically, likely due to its potency and a requirement for multiple resistance changes to overcome suppression. Changes in the HBV polymerase reverse-transcriptase (RT) domain involve lamivudine-resistance (LVDr) substitutions in the conserved YMDD motif (M204V/I +/- L180M), plus an additional ETV-specific change at residues T184, S202 or M250. These substitutions surround the putative dNTP binding site or primer grip regions of the HBV RT. To determine the mechanistic basis for ETVr, wildtype, lamivudine-resistant (M204V, L180M) and ETVr HBVs were studied using in vitro RT enzyme and cell culture assays, as well as molecular modeling. Resistance substitutions significantly reduced ETV incorporation and chain termination in HBV DNA and increased the ETV-TP inhibition constant (K(i)) for HBV RT. Resistant HBVs exhibited impaired replication in culture and reduced enzyme activity (k(cat)) in vitro. Molecular modeling of the HBV RT suggested that ETVr residue T184 was adjacent to and stabilized S202 within the LVDr YMDD loop. ETVr arose through steric changes at T184 or S202 or by disruption of hydrogen-bonding between the two, both of which repositioned the loop and reduced the ETV-triphosphate (ETV-TP) binding pocket. In contrast to T184 and S202 changes, ETVr at primer grip residue M250 was observed during RNA-directed DNA synthesis only. Experimentally, M250 changes also impacted the dNTP-binding site. Modeling suggested a novel mechanism for M250 resistance, whereby repositioning of the primer-template component of the dNTP-binding site shifted the ETV-TP binding pocket. No structural data are available to confirm the HBV RT modeling, however, results were consistent with phenotypic analysis of comprehensive substitutions of each ETVr position. Altogether, ETVr occurred through exclusion of ETV-TP from the dNTP-binding site, through different, novel mechanisms that involved lamivudine-resistance, ETV-specific substitutions, and the primer-template.
    PLoS ONE 01/2010; 5(2):e9195. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using a cell-based replicon screen, we identified a class of compounds with a thiazolidinone core structure as inhibitors of hepatitis C virus (HCV) replication. The concentration of one such compound, BMS-824, that resulted in a 50% inhibition of HCV replicon replication was approximately 5 nM, with a therapeutic index of >10,000. The compound showed good specificity for HCV, as it was not active against several other RNA and DNA viruses. Replicon cells resistant to BMS-824 were isolated, and mutations were identified. A combination of amino acid substitutions of leucine to valine at residue 31 (L31V) and glutamine to leucine at residue 54 (Q54L) in NS5A conferred resistance to this chemotype, as did a single substitution of tyrosine to histidine at amino acid 93 (Y93H) in NS5A. To further explore the region(s) of NS5A involved in inhibitor sensitivity, genotype-specific NS5A inhibitors were used to evaluate a series of genotype 1a/1b hybrid replicons. Our results showed that, consistent with resistance mapping, the inhibitor sensitivity domain also mapped to the N terminus of NS5A, but it could be distinguished from the key resistance sites. In addition, we demonstrated that NS5A inhibitors, as well as an active-site inhibitor that specifically binds NS3 protease, could block the hyperphosphorylation of NS5A, which is believed to play an essential role in the viral life cycle. Clinical proof of concept has recently been achieved with derivatives of these NS5A inhibitors, indicating that small molecules targeting a nontraditional viral protein like NS5A, without any known enzymatic activity, can also have profound antiviral effects on HCV-infected subjects.
    Journal of Virology 10/2009; 84(1):482-91. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Optimizing pharmacokinetic properties to improve oral exposure is a common theme in modern drug discovery. In the present work, in vitro Caco-2 permeability and microsomal half-life screens were utilized in an effort to guide the structure-activity relationship in order to improve the pharmacokinetic properties of novel HIV-1 attachment inhibitors. The relevance of the in vitro screens to in vivo pharmacokinetic properties was first demonstrated with a number of program compounds at the early stage of lead optimization. The Caco-2 permeability, tested at 200 microM, was quantitatively predictive of in vivo oral absorption, with complete absorption occurring at a Caco-2 permeability of 100 nm/s or higher. The liver microsomal half-life screen, conducted at 1 microM substrate concentration, can readily differentiate low-, intermediate-, and high-clearance compounds in rats, with a nearly 1:1 correlation in 12 out of 13 program compounds tested. Among the >100 compounds evaluated, BMS-488043 emerged as a lead, exhibiting a Caco-2 permeability of 178 nm/s and a microsomal half-life predictive of a low clearance (4 mL/min/kg) in humans. These in vitro characteristics translated well to the in vivo setting. The oral bioavailability of BMS-488043 in rats, dogs, and monkeys was 90%, 57%, and 60%, respectively. The clearance was low in all three species tested, with a terminal half-life ranging from 2.4 to 4.7 h. Furthermore, the oral exposure of BMS-488043 was significantly improved (6- to 12-fold in rats and monkeys) compared to the prototype compound BMS-378806 that had a suboptimal Caco-2 permeability (51 nm/s) and microsomal half-life. More importantly, the improvements in preclinical pharmacokinetics translated well to humans, leading to a >15-fold increase in the human oral exposure of BMS-488043 than BMS-378806 and enabling a clinical proof-of-concept for this novel class of anti-HIV agents. The current studies demonstrated the valuable role of in vitro ADME screens in improving oral pharmacokinetics at the lead optimization stage.
    Journal of Pharmaceutical Sciences 09/2009; 99(4):2135-52. · 3.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Azaindole derivatives derived from the screening lead 1-(4-benzoylpiperazin-1-yl)-2-(1H-indol-3-yl)ethane-1,2-dione (1) were prepared and characterized to assess their potential as inhibitors of HIV-1 attachment. Systematic replacement of each of the unfused carbon atoms in the phenyl ring of the indole moiety by a nitrogen atom provided four different azaindole derivatives that displayed a clear SAR for antiviral activity and all of which displayed marked improvements in pharmaceutical properties. Optimization of these azaindole leads resulted in the identification of two compounds that were advanced to clinical studies: (R)-1-(4-benzoyl-2-methylpiperazin-1-yl)-2-(4-methoxy-1H-pyrrolo[2,3-b]pyridin-3-yl)ethane-1,2-dione (BMS-377806, 3) and 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043, 4). In a preliminary clinical study, 4 administered as monotherapy for 8 days, reduced viremia in HIV-1-infected subjects, providing proof of concept for this mechanistic class.
    Journal of Medicinal Chemistry 09/2009; 52(23):7778-87. · 5.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amino acid substitutions that confer reduced susceptibility to antivirals arise spontaneously through error-prone viral polymerases and are selected as a result of antiviral therapy. Resistance substitutions first emerge in a fraction of the circulating virus population, below the limit of detection by nucleotide sequencing of either the population or limited sets of cloned isolates. These variants can expand under drug pressure to dominate the circulating virus population. To enhance detection of these viruses in clinical samples, we established a highly sensitive quantitative, real-time allele-specific PCR assay for hepatitis B virus (HBV) DNA. Sensitivity was accomplished using a high-fidelity DNA polymerase and oligonucleotide primers containing locked nucleic acid bases. Quantitative measurement of resistant and wild-type variants was accomplished using sequence-matched standards. Detection methodology that was not reliant on hybridization probes, and assay modifications, minimized the effect of patient-specific sequence polymorphisms. The method was validated using samples from patients chronically infected with HBV through parallel sequencing of large numbers of cloned isolates. Viruses with resistance to lamivudine and other l-nucleoside analogs and entecavir, involving 17 different nucleotide substitutions, were reliably detected at levels at or below 0.1% of the total population. The method worked across HBV genotypes. Longitudinal analysis of patient samples showed earlier emergence of resistance on therapy than was seen with sequencing methodologies, including some cases of resistance that existed prior to treatment. In summary, we established and validated an ultrasensitive method for measuring resistant HBV variants in clinical specimens, which enabled earlier, quantitative measurement of resistance to therapy.
    Antimicrobial Agents and Chemotherapy 06/2009; 53(7):2762-72. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of introducing simple halogen, alkyl, and alkoxy substituents to the 4, 5, 6 and 7 positions of 1-(4-benzoylpiperazin-1-yl)-2-(1H-indol-3-yl)ethane-1,2-dione, an inhibitor of the interaction between HIV gp120 and host cell CD4 receptors, on activity in an HIV entry assay was examined. Small substituents at C-4 generally resulted in increased potency whilst substitution at C-7 was readily tolerated and uniformly produced more potent HIV entry inhibitors. Substituents deployed at C-6 and, particularly, C-5 generally produced a modest to marked weakening of potency compared to the prototype. Small alkyl substituents at N-1 exerted minimal effect on activity whilst increasing the size of the alkyl moiety led to progressively reduced inhibitory properties. These studies establish a basic understanding of the indole element of the HIV attachment inhibitor pharmacophore.
    Bioorganic & medicinal chemistry letters 03/2009; 19(7):1977-81. · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients with chronic hepatitis B virus (HBV) infection who develop antiviral resistance lose benefits of therapy and may be predisposed to further resistance. Entecavir (ETV) resistance (ETVr) results from HBV reverse transcriptase substitutions at positions T184, S202, or M250, which emerge in the presence of lamivudine (LVD) resistance substitutions M204I/V +/- L180M. Here, we summarize results from comprehensive resistance monitoring of patients with HBV who were continuously treated with ETV for up to 5 years. Monitoring included genotypic analysis of isolates from all patients at baseline and when HBV DNA was detectable by polymerase chain reaction (> or = 300 copies/mL) from Years 1 through 5. In addition, genotyping was performed on isolates from patients experiencing virologic breakthrough (> or = 1 log(10) rise in HBV DNA). In vitro phenotypic ETV susceptibility was determined for virologic breakthrough isolates, and for HBV containing novel substitutions emerging during treatment. The results over 5 years of therapy showed that in nucleoside-naïve patients, the cumulative probability of genotypic ETVr and genotypic ETVr associated with virologic breakthrough was 1.2% and 0.8%, respectively. In contrast, a reduced barrier to resistance was observed in LVD-refractory patients, as the LVD resistance substitutions, a partial requirement for ETVr, preexist, resulting in a 5-year cumulative probability of genotypic ETVr and genotypic ETVr associated with breakthrough of 51% and 43%, respectively. Importantly, only four patients who achieved < 300 copies/mL HBV DNA subsequently developed ETVr. Conclusion: Long-term monitoring showed low rates of resistance in nucleoside-naïve patients during 5 years of ETV therapy, corresponding with potent viral suppression and a high genetic barrier to resistance. These findings support ETV as a primary therapy that enables prolonged treatment with potent viral suppression and minimal resistance.
    Hepatology 02/2009; 49(5):1503-14. · 12.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transient hepadnavirus infections can involve spread of virus to the entire hepatocyte population. In this situation hepatocytes present following recovery are derived from infected hepatocytes. During virus clearance antiviral cytokines are thought to block virus replication and formation of new covalently closed circular DNA (cccDNA), the viral transcriptional template. It remains unclear if existing cccDNA is eliminated noncytolytically or if hepatocyte death and proliferation, to compensate for killing of some of the infected hepatocytes, are needed to remove cccDNA from surviving infected hepatocytes. Interpreting the relationship between hepatocyte death and cccDNA elimination requires knowing both the amount of hepatocyte turnover and whether cccDNA synthesis is effectively blocked during the period of immune destruction of infected hepatocytes. We have addressed these questions by asking if treatment of woodchucks with the nucleoside analog inhibitor of viral DNA synthesis entecavir (ETV) reduced hepatocyte turnover during clearance of transient woodchuck hepatitis virus (WHV) infections. To estimate hepatocyte turnover, complexity analysis was carried out on virus-cell DNA junctions created by integration of WHV and present following recovery in the livers of WHV-infected control or ETV-treated woodchucks. We estimated that, on average, 2.2 to 4.8 times less hepatocyte turnover occurred during immune clearance in the ETV-treated woodchucks. Computer modeling of the complexity data suggests that mechanisms in addition to hepatocyte death were responsible for elimination of cccDNA during recovery from transient infections.
    Journal of Virology 01/2009; 83(4):1778-89. · 5.08 Impact Factor

Publication Stats

8k Citations
1,004.11 Total Impact Points

Institutions

  • 1994–2010
    • Bristol-Myers Squibb
      • • Department of Chemistry
      • • Department of Virology
      New York City, New York, United States
  • 2009
    • Fox Chase Cancer Center
      • Institute for Cancer Research
      Philadelphia, Pennsylvania, United States
  • 2003
    • University of Adelaide
      • School of Molecular and Biomedical Sciences
      Adelaide, South Australia, Australia
  • 2002
    • Stanford University
      • Division of Gastroenterology and Hepatology
      Stanford, CA, United States
  • 1977–1978
    • Roche Institute of Molecular Biology
      Nutley, New Jersey, United States