Qin Tian

Nankai University, Tianjin, Tianjin Shi, China

Are you Qin Tian?

Claim your profile

Publications (10)47.7 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Four types of doxorubicin (DOX)-loaded polymeric micelles based on hydrophobically-modified sulfated chitosan (SCTS) were prepared. The hydrophobic group was composed of glycyrrhetinic acid (GA), cholic acid, stearic acid (SA) or lauric aldehyde. DOX encapsulation depended on several parameters, including the degree of substitution of the sulfate group and the hydrophobic group, and the type of hydrophobic group. Of these micelles, GA-SCTS micelles had the best capability to solubilize DOX. In addition, GA-SCTS micelles had the ability to target HepG(2) cells, and the IC50 for DOX-loaded GA-SCTS micelles was 54.7 ng/mL, which was much lower than that of the other micelles. Further studies on the DOX-loaded GA-SCTS micelles showed that they were stable in salt and protein solutions, in cell culture media, and during long-term storage (6 months). Based on these results, these micelles may be a promising DOX-encapsulated formulation, particularly, GA-SCTS as a potential vehicle for liver-targeted delivery.
    Journal of Materials Science Materials in Medicine 04/2012; 23(7):1663-74. · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Doxorubicin (DOX)-loaded glycyrrhetinic acid (GA)-modified alginate (ALG) nanoparticles (DOX/GA-ALG NPs) were prepared for targeting therapy of liver cancer. This study focused on the biodistribution of DOX/GA-ALG NPs in Kunming mice as well as their antitumor activity against liver tumors in situ and side effects. The biodistribution data showed that the concentration of DOX in the liver reached 67.8 ± 4.9 μg/g after intravenous administration of DOX/GA-ALG NPs, which was 2.8-fold and 4.7-fold higher compared to non-GA-modified nanoparticles (DOX/CHO-ALG NPs) and DOX·HCl, respectively. The concentration of DOX in the heart of mice treated with DOX/GA-ALG NPs at any sampling time was relatively lower than that of mice treated with DOX·HCl. The liver tumor growth inhibition rate (IR) in situ was about 52.6% and the mortality was 33% in DOX·HCl group. In contrast, the IR was 76.6% and no mice died in the DOX/GA-ALG NPs group. Histological examination showed tumor necrosis in both experimental groups. Most importantly, the heart cells and the liver cells surrounding the tumor were not affected by administration of DOX/GA-ALG NPs, whereas myocardial necrosis and apparent liver cell swelling were observed after DOX·HCl administration.
    Biomaterials 12/2011; 33(7):2187-96. · 8.31 Impact Factor
  • Journal of Controlled Release 11/2011; 152 Suppl 1:e237-9. · 7.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A drug carrier based on glycyrrhetinic acid-modified sulfated chitosan (GA-SCTS) was synthesized. The glycyrrhetinic acid (GA) acted as both a hydrophobic group and a liver-targeting ligand. The GA-SCTS micelles displayed rapid and significant ability to target the liver in vivo. The IC(50) for doxorubicin (DOX)-loaded GA-SCTS micelles (DOX/SA-SCTS micelles) against HepG2 cells was 54.7 ng/mL, which was extremely lower than the amount of no-GA-modified DOX-loaded micelles. In addition, DOX/SA-SCTS micelles could target specifically the liver cancer cells. They had higher affinity for the liver cancer cells (HepG2 cells) than for the normal liver cells (Chang liver cells). There was nearly 2.18-fold improvement in uptake of the DOX/SA-SCTS micelles by HepG2 cells than that by Chang liver cells. These results indicate that GA-SCTS is not only an excellent carrier for drugs, but also a potential vehicle for liver-cancer targeting.
    Nanomedicine: nanotechnology, biology, and medicine 11/2011; 8(6):870-9. · 6.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, many efforts have been devoted to investigating the application of functionalized micelles as targeted drug delivery carriers. In this study, glycyrrhetinic acid (GA, a liver targeting ligand) modified poly(ethylene glycol)-b-poly(γ-benzyl L-glutamate) micelles were prepared and evaluated as a potential liver-targeted drug carrier. The aggregation behavior, stability, size and morphology of the micelles were investigated. Anticancer drug doxorubicin (DOX) was encapsulated in the micelles. The drug release profile, in vivo distribution and the cytotoxicity against hepatic carcinoma QGY-7703 cells of DOX-loaded micelles were studied. The results indicated that the release profile was pH-dependent with Fickian diffusion kinetics. The micelles were remarkably targeted to the liver, inducing a 4.9-fold higher DOX concentration than that for free DOX · HCl. The DOX-loaded micelles exhibited almost twofold more potent cytotoxicity compared with DOX · HCl, and the cytotoxicity was time- and dosage-dependent. These results suggest that GA-functionalized micelles represent a promising carrier for drug delivery to the liver.
    Journal of Materials Science Materials in Medicine 03/2011; 22(4):853-63. · 2.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two kinds of glycyrrhetinic acid-modified chitosan/poly(ethylene glycol) nanoparticles (CTS/PEG-GA NPs) were prepared by an ionic gelation process in which the liver targeting ligand glycyrrhetinic acid (GA) was introduced into the nanoparticles at the C(30)-carboxyl group (CTS/PEG-GA(c) NPs) or the C(3)-hydroxyl group (CTS/PEG-GA(h) NPs). Their characteristics, especially their ability to target the liver, were compared. The results showed that both the CTS/PEG-GA(c) NPs and the CTS/PEG-GA(h) NPs are remarkably targeted to the liver. The accumulation in the liver is 51.3% and 56.5% of the injected dose for the CTS/PEG-GA(c)(4.60%) NPs (the subscript number denotes the GA content as weight percent in nanoparticles) and the CTS/PEG-GA(h)(4.57%) NPs at 3 h after injection, respectively. This is nearly 2.6-2.8 times higher than that obtained with the CTS/PEG NPs. According to our results, there is no significant difference between the CTS/PEG-GA(c) NPs and the CTS/PEG-GA(h) NPs in their ability to target the liver, when they were formed under identical conditions. This indicated that the C(3)-hydroxyl group in GA has little influence on the targeting ability.
    International Journal of Pharmaceutics 11/2010; 400(1-2):153-7. · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Liver targeted micelles were successfully constructed via self-assembly of glycyrrhetinic acid (GA)-modified poly(ethylene glycol)-b-poly(gamma-benzyl l-glutamate) (GA-PEG-PBLG) block co-polymers, which were fabricated via ring opening polymerization of gamma-benzyl l-glutamate N-carboxyanhydride monomer initiated by GA-modified PEG. The in vivo biodistribution and the in vitro cellular uptake of these micelles were investigated. The results showed that the relative uptake of doxorubicin (DOX)-loaded micelles (DOX/GA-PEG-PBLG) in liver was much higher than in other tissues, and the resulting DOX concentration in liver was about 2.2-fold higher than that from the micelles without modification by GA. Moreover, the cellular uptake study demonstrated that the introduction of GA to the micelles could significantly increase the affinity for human hepatic carcinoma 7703 cells, which induced a 3.7-fold higher endocytosis than unmodified ones. The cytotoxicity of DOX/GA-PEG-PBLG micelles (IC(50) 47 ngml(-1)) was much higher than that of free DOX (IC(50) 90 ngml(-1)). These results indicate that GA-modified micelles have great potential in liver targeting therapy.
    Acta biomaterialia 05/2010; 6(10):3927-35. · 5.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A liver-targeted drug delivery carrier, composed of chitosan/poly(ethylene glycol)-glycyrrhetinic acid (CTS/PEG-GA) nanoparticles, was prepared by an ionic gelation process, in which glycyrrhetinic acid (GA) acted as the targeting ligand. The formation and characterization of these nanoparticles were confirmed by FT-IR, dynamic light scattering (DLS) and zeta potential measurements. The biodistribution of the nanoparticles was assessed by single-photon emission computed tomography (SPECT), and the cellular uptake was evaluated using human hepatic carcinoma cells (QGY-7703 cells). The anti-neoplastic effect of the doxorubicin.HCl-loaded nanoparticles (DOX-loaded nanoparticles) was also investigated in vitro and in vivo. The results showed that the CTS/PEG-GA nanoparticles were remarkably targeted to the liver, and keep at a high level during the experiment. The accumulation in the liver was 51.3% at 3 h after injection; this was nearly 2.6 times that obtained with the CTS/PEG nanoparticles. The DOX-loaded nanoparticles were greatly cytotoxic to QGY-7703 cells, and the IC(50) (50% inhibitory concentration) for the free doxorubicin.HCl (DOX.HCl) and the DOX-loaded CTS/PEG-GA nanoparticles were 47 and 79 ng/mL, respectively. Moreover, the DOX-loaded CTS/PEG-GA nanoparticles could effectively inhibit tumor growth in H22 cell-bearing mice.
    Biomaterials 03/2010; 31(17):4748-56. · 8.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, novel liver targeted doxorubicin (DOX) loaded alginate (ALG) nanoparticles were prepared by CaCl2 crosslinking method. Glycyrrhetinic acid (GA, a liver targeted molecule) modified alginate (GA-ALG) was synthesized in a heterogeneous system, and the structure of GA-ALG and the substitution degree of GA were analyzed by 1H NMR, FT-IR and elemental analysis. The drug release profile under the simulated physiological condition and cytotoxicity experiments of drug-loaded GA-ALG nanoparticles were carried out in vitro. Transmission electron micrographs (TEM) and dynamic light scattering (DLS) analysis showed that drug-loaded GA-ALG nanoparticles have spherical shape structure with the mean hydrodynamic diameter around 214 ± 11 nm. The drug release was shown to last 20 days, and the MTT assay suggested that drug-loaded GA-ALG nanoparticles had a distinct killing effect on 7703 hepatocellular carcinoma cells.
    Science in China Series B Chemistry 09/2009; 52(9):1382-1387. · 1.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work, glycyrrhetinic acid-modified chitosan (mGA-suc-CTS) used as liver targeted carrier for drug delivery, was prepared via hemisuccinate as a bridged group. The structure of the product was confirmed by IR and NMR methods and the degree of substitution (DS) of glycyrrhetinic acid groups was estimated via elemental analysis. Nanoparticles were formed by ionic gelation methold. The drug-loading and release behavior of the nanoparticles were investigated using BSA as the model drug. The results indicated that the carrier with a highest DS of 5.19% could be got and the DS was controlled by changing reaction temperature or feed ratio. BSA could be entrapped into the nanoparticles with the drug-loading ratio of 26.3% and the encapsulation efficiency of 81.5%. A sustained release over an 11-day period was observed in pH 7.4 in vitro.
    Chinese Science Bulletin 09/2009; 54(18):3121-3126. · 1.37 Impact Factor