Ramakrishnan Rajagopalan

University of Washington Seattle, Seattle, Washington, United States

Are you Ramakrishnan Rajagopalan?

Claim your profile

Publications (20)119.78 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: About half of malignant hyperthermia (MH) cases are associated with skeletal muscle ryanodine receptor 1 (RYR1) and calcium channel, voltage-dependent, L type, α1S subunit (CACNA1S) gene mutations, leaving many with an unknown cause. The authors chose to apply a sequencing approach to uncover causal variants in unknown cases. Sequencing the exome, the protein-coding region of the genome, has power at low sample sizes and identified the cause of over a dozen Mendelian disorders. The authors considered four families with multiple MH cases lacking mutations in RYR1 and CACNA1S by Sanger sequencing of complementary DNA. Exome sequencing in two affecteds per family, chosen for maximum genetic distance, were compared. Variants were ranked by allele frequency, protein change, and measures of conservation among mammals to assess likelihood of causation. Finally, putative pathogenic mutations were genotyped in other family members to verify cosegregation with MH. Exome sequencing revealed one rare RYR1 nonsynonymous variant in each of three families (Asp1056His, Val2627Met, Val4234Leu), and one CACNA1S variant (Thr1009Lys) in the fourth family. These were not seen in variant databases or in our control population sample of 5,379 exomes. Follow-up sequencing in other family members verified cosegregation of alleles with MH. The authors found that using both exome sequencing and allele frequency data from large sequencing efforts may aid genetic diagnosis of MH. In a sample selected by the authors, this technique was more sensitive for variant detection in known genes than Sanger sequencing of complementary DNA, and allows for the possibility of novel gene discovery.
    Anesthesiology 09/2013; · 5.16 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The occurrence of an electroencephalographic (EEG) seizure after surgery for complex congenital heart defects has been associated with worse neurodevelopmental (ND) outcomes. We previously identified postoperative seizures documented by 48-hour EEG monitoring in 11% of 178 neonates and infants. Evaluation at 1 year of age did not identify an adverse effect of an EEG seizure on ND outcomes. The current study was undertaken to determine if testing in the preschool period would identify deficits that become apparent as children develop. The ND outcomes assessed at 4 years of age included cognition, language, attention, impulsivity, executive function, behavior problems, academic achievement, and visual and fine motor skills. Developmental evaluations were performed in 132 (87%) of 151 survivors. For the entire cohort, the Full-Scale IQ was 95.0 ± 18.5. IQ was 95.1 ± 18.7 for patients without a history of seizure and 93.6 ± 16.7 for those with a history of seizure. After covariate adjustment, occurrence of an EEG seizure was associated with worse executive function (P = .037) and impaired social interactions/restricted behavior (P = .05). Seizures were not significantly associated with worse performance for cognition, language, attention, impulsivity, academic achievement, or motor skills (all P > .1). The occurrence of a postoperative seizure is a biomarker of brain injury. This study confirms that postoperative EEG seizures are associated with worse ND outcomes, characterized by impairments of executive function and a higher prevalence of deficits in social interactions and repetitive/restricted behaviors in preschool survivors of cardiac surgery in infancy. However, EEG seizures were not associated with worse cognitive, language, or motor skills.
    The Journal of thoracic and cardiovascular surgery 07/2013; 146(1):132-9. · 3.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Blood pressure (BP) is a heritable determinant of risk for cardiovascular disease. To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP), we genotyped ∼50,000 single nucleotide polymorphisms (SNPs) that capture variation in ∼2,100 candidate genes for cardiovascular phenotypes in 61,619 individuals of European ancestry from cohort studies in the US and Europe. We identified novel associations between rs347591 and SBP (chromosome 3p25.3, in an intron of HRH1) and between rs2169137 and DBP (chromosome1q32.1 in an intron of MDM4) and between rs2014408 and SBP (chromosome 11p15 in an intron of SOX6), previously reported to be associated with MAP. We also confirmed ten previously known loci associated with SBP, DBP, MAP, or PP (ADRB1, ATP2B1, SH2B3/ATXN2, CSK, CYP17A1, FURIN, HFE, LSP1, MTHFR, SOX6) at array-wide significance (P value<2.4 x 10(-6)). We then replicated these associations in an independent set of 65,886 individuals of European ancestry. Findings from eQTL analysis showed associations of SNPs in the MDM4 region with MDM4 expression. We did not find evidence of association of the two novel SNPs in MDM4 and HRH1 with sequelae of high BP including coronary artery disease, left ventricular hypertrophy, or stroke. In summary, we identified two novel loci associated with BP and confirmed multiple previously reported associations. Our findings extend our understanding of genes involved in BP regulation, some of which may eventually provide new targets for therapeutic intervention.
    Human Molecular Genetics 01/2013; · 7.69 Impact Factor
  • Source
    Human Molecular Genetics 01/2013; 22(1):184-201. · 7.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies (GWASs) have identified many SNPs underlying variations in plasma-lipid levels. We explore whether additional loci associated with plasma-lipid phenotypes, such as high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TGs), can be identified by a dense gene-centric approach. Our meta-analysis of 32 studies in 66,240 individuals of European ancestry was based on the custom ∼50,000 SNP genotyping array (the ITMAT-Broad-CARe array) covering ∼2,000 candidate genes. SNP-lipid associations were replicated either in a cohort comprising an additional 24,736 samples or within the Global Lipid Genetic Consortium. We identified four, six, ten, and four unreported SNPs in established lipid genes for HDL-C, LDL-C, TC, and TGs, respectively. We also identified several lipid-related SNPs in previously unreported genes: DGAT2, HCAR2, GPIHBP1, PPARG, and FTO for HDL-C; SOCS3, APOH, SPTY2D1, BRCA2, and VLDLR for LDL-C; SOCS3, UGT1A1, BRCA2, UBE3B, FCGR2A, CHUK, and INSIG2 for TC; and SERPINF2, C4B, GCK, GATA4, INSR, and LPAL2 for TGs. The proportion of explained phenotypic variance in the subset of studies providing individual-level data was 9.9% for HDL-C, 9.5% for LDL-C, 10.3% for TC, and 8.0% for TGs. This large meta-analysis of lipid phenotypes with the use of a dense gene-centric approach identified multiple SNPs not previously described in established lipid genes and several previously unknown loci. The explained phenotypic variance from this approach was comparable to that from a meta-analysis of GWAS data, suggesting that a focused genotyping approach can further increase the understanding of heritability of plasma lipids.
    The American Journal of Human Genetics 10/2012; · 11.20 Impact Factor
  • Source
    The American Journal of Human Genetics 04/2012; 90(4):753. · 11.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To identify genetic factors contributing to type 2 diabetes (T2D), we performed large-scale meta-analyses by using a custom ∼50,000 SNP genotyping array (the ITMAT-Broad-CARe array) with ∼2000 candidate genes in 39 multiethnic population-based studies, case-control studies, and clinical trials totaling 17,418 cases and 70,298 controls. First, meta-analysis of 25 studies comprising 14,073 cases and 57,489 controls of European descent confirmed eight established T2D loci at genome-wide significance. In silico follow-up analysis of putative association signals found in independent genome-wide association studies (including 8,130 cases and 38,987 controls) performed by the DIAGRAM consortium identified a T2D locus at genome-wide significance (GATAD2A/CILP2/PBX4; p = 5.7 × 10(-9)) and two loci exceeding study-wide significance (SREBF1, and TH/INS; p < 2.4 × 10(-6)). Second, meta-analyses of 1,986 cases and 7,695 controls from eight African-American studies identified study-wide-significant (p = 2.4 × 10(-7)) variants in HMGA2 and replicated variants in TCF7L2 (p = 5.1 × 10(-15)). Third, conditional analysis revealed multiple known and novel independent signals within five T2D-associated genes in samples of European ancestry and within HMGA2 in African-American samples. Fourth, a multiethnic meta-analysis of all 39 studies identified T2D-associated variants in BCL2 (p = 2.1 × 10(-8)). Finally, a composite genetic score of SNPs from new and established T2D signals was significantly associated with increased risk of diabetes in African-American, Hispanic, and Asian populations. In summary, large-scale meta-analysis involving a dense gene-centric approach has uncovered additional loci and variants that contribute to T2D risk and suggests substantial overlap of T2D association signals across multiple ethnic groups.
    The American Journal of Human Genetics 02/2012; 90(3):410-25. · 11.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adverse neurodevelopmental sequelae are reported among children who undergo early cardiac surgery to repair congenital heart defects (CHD). APOE genotype has previously been determined to contribute to the prediction of these outcomes. Understanding further genetic causes for the development of poor neurobehavioral outcomes should enhance patient risk stratification and improve both prevention and treatment strategies. We performed a prospective observational study of children who underwent cardiac surgery before six months of age; this included a neurodevelopmental evaluation between their fourth and fifth birthdays. Attention and behavioral skills were assessed through parental report utilizing the Attention Deficit-Hyperactivity Disorder-IV scale preschool edition (ADHD-IV), and Child Behavior Checklist (CBCL/1.5-5), respectively. Of the seven investigated, three neurodevelopmental phenotypes met genomic quality control criteria. Linear regression was performed to determine the effect of genome-wide genetic variation on these three neurodevelopmental measures in 316 subjects. This genome-wide association study identified single nucleotide polymorphisms (SNPs) associated with three neurobehavioral phenotypes in the postoperative children ADHD-IV Impulsivity/Hyperactivity, CBCL/1.5-5 PDPs, and CBCL/1.5-5 Total Problems. The most predictive SNPs for each phenotype were: a LGALS8 intronic SNP, rs4659682, associated with ADHD-IV Impulsivity (P = 1.03×10(-6)); a PCSK5 intronic SNP, rs2261722, associated with CBCL/1.5-5 PDPs (P = 1.11×10(-6)); and an intergenic SNP, rs11617488, 50 kb from FGF9, associated with CBCL/1.5-5 Total Problems (P = 3.47×10(-7)). 10 SNPs (3 for ADHD-IV Impulsivity, 5 for CBCL/1.5-5 PDPs, and 2 for CBCL/1.5-5 Total Problems) had p<10(-5). No SNPs met genome-wide significance for our three neurobehavioral phenotypes; however, 10 SNPs reached a threshold for suggestive significance (p<10(-5)). Given the unique nature of this cohort, larger studies and/or replication are not possible. Studies to further investigate the mechanisms through which these newly identified genes may influence neurodevelopment dysfunction are warranted.
    PLoS ONE 01/2012; 7(9):e45936. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To identify genetic factors contributing to type 2 diabetes (T2D), we performed large-scale meta-analyses by using a custom ∼50,000 SNP genotyping array (the ITMAT-Broad-CARe array) with ∼2000 candidate genes in 39 multiethnic population-based studies, case-control studies, and clinical trials totaling 17,418 cases and 70,298 controls. First, meta-analysis of 25 studies comprising 14,073 cases and 57,489 controls of European descent confirmed eight established T2D loci at genome-wide significance. In silico follow-up analysis of putative association signals found in independent genome-wide association studies (including 8,130 cases and 38,987 controls) performed by the DIAGRAM consortium identified a T2D locus at genome-wide significance (GATAD2A/CILP2/PBX4; p = 5.7 × 10(-9)) and two loci exceeding study-wide significance (SREBF1, and TH/INS; p < 2.4 × 10(-6)). Second, meta-analyses of 1,986 cases and 7,695 controls from eight African-American studies identified study-wide-significant (p = 2.4 × 10(-7)) variants in HMGA2 and replicated variants in TCF7L2 (p = 5.1 × 10(-15)). Third, conditional analysis revealed multiple known and novel independent signals within five T2D-associated genes in samples of European ancestry and within HMGA2 in African-American samples. Fourth, a multiethnic meta-analysis of all 39 studies identified T2D-associated variants in BCL2 (p = 2.1 × 10(-8)). Finally, a composite genetic score of SNPs from new and established T2D signals was significantly associated with increased risk of diabetes in African-American, Hispanic, and Asian populations. In summary, large-scale meta-analysis involving a dense gene-centric approach has uncovered additional loci and variants that contribute to T2D risk and suggests substantial overlap of T2D association signals across multiple ethnic groups.
    The American Journal of Human Genetics 01/2012; · 11.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To identify genetic factors contributing to type 2 diabetes (T2D), we performed large-scale meta-analyses by using a custom approximately 50,000 SNP genotyping array (the ITMAT-Broad-CARe array) with approximately 2000 candidate genes in 39 multiethnic population-based studies, case-control studies, and clinical trials totaling 17,418 cases and 70,298 controls. First, meta-analysis of 25 studies comprising 14,073 cases and 57,489 controls of European descent confirmed eight established T2D loci at genome-wide significance. In silico follow-up analysis of putative association signals found in independent genome-wide association studies (including 8,130 cases and 38,987 controls) performed by the DIAGRAM consortium identified a T2D locus at genome-wide significance (GATAD2A/CILP2/PBX4; p = 5.7 x 10(-9)) and two loci exceeding study-wide significance (SREBF1, and TH/INS; p < 2.4 x 10(-6)). Second, meta-analyses of 1,986 cases and 7,695 controls from eight African-American studies identified study-wide-significant (p = 2.4 x 10(-7)) variants in HMGA2 and replicated variants in TCF7L2 (p = 5.1 x 10(-15)). Third, conditional analysis revealed multiple known and novel independent signals within five T2D-associated genes in samples of European ancestry and within HMGA2 in African-American samples. Fourth, a multiethnic meta-analysis of all 39 studies identified T2D-associated variants in BCL2 (p = 2.1 x 10(-8)). Finally, a composite genetic score of SNPs from new and established T2D signals was significantly associated with increased risk of diabetes in African-American, Hispanic, and Asian populations. In summary, large-scale meta-analysis involving a dense gene-centric approach has uncovered additional loci and variants that contribute to T2D risk and suggests substantial overlap of T2D association signals across multiple ethnic groups.
    American journal of human genetics. 01/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phospholipid transfer protein activity (PLTPa) is associated with insulin levels and has been implicated in atherosclerotic disease in both mice and humans. Variation at the PLTP structural locus on chromosome 20 explains some, but not all, heritable variation in PLTPa. In order to detect quantitative trait loci (QTLs) elsewhere in the genome that affect PLTPa, we performed both oligogenic and single QTL linkage analysis on four large families (n = 227 with phenotype, n = 330 with genotype, n = 462 total), ascertained for familial combined hyperlipidemia. We detected evidence of linkage between PLTPa and chromosome 19p (lod = 3.2) for a single family and chromosome 2q (lod = 2.8) for all families. Inclusion of additional marker and exome sequence data in the analysis refined the linkage signal on chromosome 19 and implicated coding variation in LASS4, a gene regulated by leptin that is involved in ceramide synthesis. Association between PLTPa and LASS4 variation was replicated in the other three families (P = 0.02), adjusting for pedigree structure. To our knowledge, this is the first example for which exome data was used in families to identify a complex QTL that is not the structural locus.
    The Journal of Lipid Research 07/2011; 52(10):1837-46. · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: lipoprotein(a) [Lp(a)] level is an established risk factor for coronary artery disease and has been implicated in carotid artery disease (CAAD). The relationship between genetic variation in the LPA gene region and CAAD risk remains unknown. we genotyped single nucleotide polymorphisms (SNPs) in the LPAL2, LPA, and PLG regions in 530 individuals with severe CAAD and 770 controls and kringle IV type 2 (KIV2) repeat length in a subset of 90 individuals. nine SNPs collectively accounted for 30% of the variance in Lp(a) level. Six SNPs were associated with Lp(a) level after accounting for KIV2 copy number, and the dominant KIV2 allele combined with these markers explained 60% of the variance in Lp(a) level. Five SNPs, including rs10455872, which had an odds ratio of 2.1 per minor allele and haplotypes formed by rs10455872, rs6919346, and rs3123629, were significant predictors of CAAD. After accounting for Lp(a) level, all evidence of CAAD-genotype association in the LPA region was eliminated. LPA region SNPs capture some but not all of the effect of KIV2 repeat length on Lp(a) level. There are associations between LPA region SNPs and CAAD that appear to be attributable to effects on Lp(a) level.
    Stroke 01/2011; 42(1):2-9. · 6.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Height is a classic complex trait with common variants in a growing list of genes known to contribute to the phenotype. Using a genecentric genotyping array targeted toward cardiovascular-related loci, comprising 49,320 SNPs across approximately 2000 loci, we evaluated the association of common and uncommon SNPs with adult height in 114,223 individuals from 47 studies and six ethnicities. A total of 64 loci contained a SNP associated with height at array-wide significance (p < 2.4 x 10(-6)), with 42 loci surpassing the conventional genome-wide significance threshold (p < 5 x 10(-8)). Common variants with minor allele frequencies greater than 5% were observed to be associated with height in 37 previously reported loci. In individuals of European ancestry, uncommon SNPs in IL11 and SMAD3, which would not be genotyped with the use of standard genome-wide genotyping arrays, were strongly associated with height (p < 3 x 10(-11)). Conditional analysis within associated regions revealed five additional variants associated with height independent of lead SNPs within the locus, suggesting allelic heterogeneity. Although underpowered to replicate findings from individuals of European ancestry, the direction of effect of associated variants was largely consistent in African American, South Asian, and Hispanic populations. Overall, we show that dense coverage of genes for uncommon SNPs, coupled with large-scale meta-analysis, can successfully identify additional variants associated with a common complex trait.
    American journal of human genetics. 01/2011; 88(1):6-18.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Height is a classic complex trait with common variants in a growing list of genes known to contribute to the phenotype. Using a genecentric genotyping array targeted toward cardiovascular-related loci, comprising 49,320 SNPs across approximately 2000 loci, we evaluated the association of common and uncommon SNPs with adult height in 114,223 individuals from 47 studies and six ethnicities. A total of 64 loci contained a SNP associated with height at array-wide significance (p < 2.4 × 10(-6)), with 42 loci surpassing the conventional genome-wide significance threshold (p < 5 × 10(-8)). Common variants with minor allele frequencies greater than 5% were observed to be associated with height in 37 previously reported loci. In individuals of European ancestry, uncommon SNPs in IL11 and SMAD3, which would not be genotyped with the use of standard genome-wide genotyping arrays, were strongly associated with height (p < 3 × 10(-11)). Conditional analysis within associated regions revealed five additional variants associated with height independent of lead SNPs within the locus, suggesting allelic heterogeneity. Although underpowered to replicate findings from individuals of European ancestry, the direction of effect of associated variants was largely consistent in African American, South Asian, and Hispanic populations. Overall, we show that dense coverage of genes for uncommon SNPs, coupled with large-scale meta-analysis, can successfully identify additional variants associated with a common complex trait.
    The American Journal of Human Genetics 01/2011; 88(1):6-18. · 11.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to assess deep hypothermic circulatory arrest (DHCA) as a modifier of neurodevelopmental (ND) outcomes in preschool children after cardiac surgery in infancy for repair of congenital heart defects (CHD). This is a planned analysis of infants enrolled in a prospective study of apolipoprotein E polymorphisms and ND outcome after cardiac surgery. The effect of DHCA was assessed in patients with single or biventricular CHD without aortic arch obstruction. Neurodevelopmental assessment at 4 years of age included cognition, language, attention, impulsivity, executive function, social competence, and visual-motor and fine-motor skills. Patient and procedural variables were evaluated in univariate and multivariate models. Neurodevelopmental testing was completed in 238 of 307 eligible patients (78%). Deep hypothermic circulatory arrest was used at the discretion of the surgeon at least once in 92 infants (38.6%) with a median cumulative duration of 36 minutes (range, 1 to 132 minutes). By univariate analysis, DHCA patients were more likely to have single-ventricle CHD (p = 0.013), lower socioeconomic status (p < 0.001), a higher incidence of preoperative ventilation (p < 0.001), and were younger and smaller at the first surgery (p < 0.001). By multivariate analysis, use of DHCA was not predictive of worse performance for any ND outcome. In this cohort of children undergoing repair of CHD in infancy, patients who underwent DHCA had risk factors associated with worse ND outcomes. Despite these, use of DHCA for repair of single-ventricle and biventricular CHD without aortic arch obstruction was not predictive of worse performance for any ND domain tested at 4 years of age.
    The Annals of thoracic surgery 12/2010; 90(6):1985-94; discussion 1994-5. · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies have identified numerous single nucleotide polymorphisms (SNPs) affecting high density lipoprotein (HDL) or low density lipoprotein (LDL) cholesterol levels; these SNPs may contribute to the genetic basis of vascular diseases. We assessed the impact of 34 SNPs at 23 loci on dyslipidemia, key lipid sub-phenotypes, and severe carotid artery disease (CAAD) in a case-control cohort. The effects of these SNPs on HDL and LDL were consistent with those previously reported, and we provide unbiased estimates of the percent variance in HDL (3.9%) and LDL (3.3%) explained by genetic risk scores. We assessed the effects of these SNPs on HDL subfractions, apolipoprotein A-1, LDL buoyancy, apolipoprotein B, and lipoprotein (a) and found that rs646776 predicts apolipoprotein B level while rs2075650 predicts LDL buoyancy. Finally, we tested the role of these SNPs in conferring risk for ultrasonographically documented CAAD stenosis status. We found that two loci, chromosome 1p13.3 near CELSR2 and PSRC1 which contains rs646776, and 19q13.2 near TOMM40 and APOE which contains rs2075650, harbor risk alleles for CAAD. Our analysis of 34 SNPs contributing to dyslipidemia at 23 loci suggests that genetic variation in the 1p13.3 region may increase risk of CAAD by increasing LDL particle number, whereas variation in the 19q13.2 region may increase CAAD risk by promoting formation of smaller, denser LDL particles.
    Lipids in Health and Disease 12/2009; 8:52. · 2.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phospholipid transfer protein (PLTP) belongs to the lipid transfer/lipopolysaccharide-binding protein gene family. Expression of PLTP has been implicated in the development of atherosclerosis. We evaluated the effects of PLTP region tagging single nucleotide polymorphisms (SNPs) on the prediction of both carotid artery disease (CAAD) and PLTP activity. CAAD effects were evaluated in 442 Caucasian male subjects with severe CAAD and 497 vascular disease-free controls. SNP prediction of PLTP transfer activity was evaluated in both a subsample of 87 subjects enriched for an allele of interest and in a confirmation sample of 210 Caucasian males and females. Hemoglobin A1c or insulin level predicted 11-14% of age- and sex-adjusted PLTP activity. PLTP SNPs that predicted approximately 11-30% of adjusted PLTP activity variance were identified in the two cohorts. For rs6065904, the allele that was associated with CAAD was also associated with elevated PLTP activity in both cohorts. SNPs associated with PLTP activity also predicted variation in LDL-cholesterol and LDL-B level only in the replication cohort. These results demonstrate that PLTP activity is strongly influenced by PLTP region polymorphisms and metabolic factors.
    The Journal of Lipid Research 11/2009; 51(5):983-90. · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasma lipoprotein(a) (Lp[a]) level is an independent risk factor of cardiovascular disease that is under strong genetic control. We conducted a genome-wide association study of plasma Lp(a) in 386 members of a founder population that adheres to a communal lifestyle, proscribes cigarette smoking, and prepares and eats meals communally. We identified associations with 77 single nucleotide polymorphisms (SNPs) spanning 12.5 Mb on chromosome 6q26-q27 that met criteria for genome-wide significance (P <or= 1.3 x 10(-7)) and were within or flanking nine genes, including LPA. We show that variation in at least six genes in addition to LPA are significantly associated with Lp(a) levels independent of each other and of the kringle IV repeat polymorphism in the LPA gene. One novel SNP in intron 37 of the LPA gene was also associated with Lp(a) levels and carotid artery disease number in unrelated Caucasians (P = 7.3 x 10(-12) and 0.024, respectively), also independent of kringle IV number. This study suggests a complex genetic architecture of Lp(a) levels that may involve multiple loci on chromosome 6q26-q27.
    The Journal of Lipid Research 02/2009; 50(5):798-806. · 4.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To identify genetic factors contributing to type 2 diabetes (T2D), we performed large-scale meta-analyses by using a custom <50,000 SNP genotyping array (the ITMAT-Broad-CARe array) with <2000 candidate genes in 39 multiethnic population-based studies, case-control studies, and clinical trials totaling 17,418 cases and 70,298 controls. First, meta-analysis of 25 studies comprising 14,073 cases and 57,489 controls of European descent confirmed eight established T2D loci at genome-wide significance. In silico follow-up analysis of putative association signals found in independent genome-wide association studies (including 8,130 cases and 38,987 controls) performed by the DIAGRAM consortium identified a T2D locus at genome-wide significance (GATAD2A/CILP2/PBX4; p = 5.7 × 10�9) and two loci exceeding study-wide significance (SREBF1, and TH/INS; p < 2.4 × 10�6). Second, meta-analyses of 1,986 cases and 7,695 controls from eight African-American studies identified study-wide-significant (p = 2.4 × 10�7) variants in HMGA2 and replicated variants in TCF7L2 (p = 5.1 × 10�15). Third, conditional analysis revealed multiple known and novel independent signals within five T2D-associated genes in samples of European ancestry and within HMGA2 in African-American samples. Fourth, a multiethnic meta-analysis of all 39 studies identified T2D-associated variants in BCL2 (p = 2.1 × 10�8). Finally, a composite genetic score of SNPs from new and established T2D signals was significantly associated with increased risk of diabetes in African-American, Hispanic, and Asian populations. In summary, large-scale meta-analysis involving a dense gene-centric approach has uncovered additional loci and variants that contribute to T2D risk and suggests substantial overlap of T2D association signals across multiple ethnic groups.
    The American Journal of Human Genetics · 11.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Height is a classic complex trait with common variants in a growing list of genes known to contribute to the phenotype. Using a genecentric genotyping array targeted toward cardiovascular-related loci, comprising 49,320 SNPs across approximately 2000 loci, we evaluated the association of common and uncommon SNPs with adult height in 114,223 individuals from 47 studies and six ethnicities. A total of 64 loci contained a SNP associated with height at array-wide significance (p < 2.4 x 10(-6)), with 42 loci surpassing the conventional genome-wide significance threshold (p < 5 x 10(-8)). Common variants with minor allele frequencies greater than 5% were observed to be associated with height in 37 previously reported loci. In individuals of European ancestry, uncommon SNPs in IL11 and SMAD3, which would not be genotyped with the use of standard genome-wide genotyping arrays, were strongly associated with height (p < 3 x 10(-11)). Conditional analysis within associated regions revealed five additional variants associated with height independent of lead SNPs within the locus, suggesting allelic heterogeneity. Although underpowered to replicate findings from individuals of European ancestry, the direction of effect of associated variants was largely consistent in African American, South Asian, and Hispanic populations. Overall, we show that dense coverage of genes for uncommon SNPs, coupled with large-scale meta-analysis, can successfully identify additional variants associated with a common complex trait.
    Am J Hum Genet. 88(1):6-18.

Publication Stats

264 Citations
119.78 Total Impact Points

Institutions

  • 2009–2013
    • University of Washington Seattle
      • Division of Medical Genetics
      Seattle, Washington, United States
  • 2012
    • Massachusetts General Hospital
      • Center for Human Genetic Research
      Boston, MA, United States
  • 2011
    • The University of Western Ontario
      London, Ontario, Canada