Navarrete D

University of Exeter, Exeter, England, United Kingdom

Are you Navarrete D?

Claim your profile

Publications (5)10.95 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies of carbon allocation in forests provide essential information for understanding spatial and temporal differences in carbon cycling that can inform models and predict possible responses to changes in climate. Amazon forests play a particularly significant role in the global carbon balance, but there are still large uncertainties regarding abiotic controls on the rates of net primary production (NPP) and the allocation of photosynthetic products to different ecosystem components. We evaluated three different aspects of stand-level carbon allocation (biomass, NPP, and its partitioning) in two amazon forests on different soils (nutrient-rich clay soils versus nutrient-poor sandy soils), but otherwise growing under similar conditions. We found differences in carbon allocation patterns between these two forests, showing that the forest on clay soil had a higher aboveground and total biomass as well as a higher aboveground NPP than the sandy forest. However, differences between the two forest types in terms of total NPP were smaller, as a consequence of different patterns in the carbon allocation of above- and belowground components. The proportional allocation of NPP to new foliage was relatively similar between them. Our results of aboveground biomass increments and fine-root production suggest a possible trade-off between carbon allocation to fine-roots versus aboveground compartments, as opposed to the most commonly assumed trade-off between total above- and belowground production. Despite these differences among forests in terms of carbon allocation, the leaf area index showed only small differences, suggesting that this index is more indicative of total NPP than its above or belowground components.
    Journal of Geophysical Research: Biogeosciences 09/2014; 119(9). DOI:10.1002/2014JG002653 · 3.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The production of aboveground soft tissue represents an important share of total net primary production in tropical rain forests. Here we draw from a large number of published and unpublished datasets (n=81 sites) to assess the determinants of litterfall variation across South American tropical forests. We show that across old-growth tropical rainforests, litterfall averages 8.61±1.91 Mg ha−1 yr−1 (mean ± standard deviation, in dry mass units). Secondary forests have a lower annual litterfall than old-growth tropical forests with a mean of 8.01±3.41 Mg ha−1 yr−1. Annual litterfall shows no significant variation with total annual rainfall, either globally or within forest types. It does not vary consistently with soil type, except in the poorest soils (white sand soils), where litterfall is significantly lower than in other soil types (5.42±1.91 Mg ha−1 yr−1). We also study the determinants of litterfall seasonality, and find that it does not depend on annual rainfall or on soil type. However, litterfall seasonality is significantly positively correlated with rainfall seasonality. Finally, we assess how much carbon is stored in reproductive organs relative to photosynthetic organs. Mean leaf fall is 5.74±1.83 Mg ha−1 yr−1 (71% of total litterfall). Mean allocation into reproductive organs is 0.69±0.40 Mg ha−1 yr−1 (9% of total litterfall). The investment into reproductive organs divided by leaf litterfall increases with soil fertility, suggesting that on poor soils, the allocation to photosynthetic organs is prioritized over that to reproduction. Finally, we discuss the ecological and biogeochemical implications of these results.
    Biogeosciences 01/2010; 7(1). DOI:10.5194/bg-7-43-2010 · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The production of aboveground soft tissue represents an important share of total net primary production in tropical rain forests. Here we draw from a large number of published and unpublished datasets (n=81 sites) to assess the determinants of litterfall variation across South American tropical forests. We show that across old-growth tropical rainforests, litterfall averages 8.61±1.91Mg/ha/yr. Secondary forests have a lower annual litterfall than old-growth tropical forests with a mean of 8.01±3.41 Mg/ha/yr. Annual litterfall shows no significant variation with total annual rainfall, either globally or within forest types. It does not vary consistently with soil type, except in the poorest soils (white sand soils), where litterfall is significantly lower than in other soil types (5.42±1.91Mg/ha/yr). Litterfall declines significantly with increasing N:P. We also study the determinants of litterfall seasonality, and find that it does not depend on annual rainfall or on soil type. However, litterfall seasonality is significantly positively correlated with rainfall seasonality. Finally, we assess how much carbon is stored in reproductive organs relative to photosynthetic organs. Mean leaf fall is 5.74±1.83 Mg/ha/yr (71% of total litterfall). Mean allocation into reproductive organs is 0.69±0.40Mg/ha/yr (9% of total litterfall). The investment into reproductive organs divided by leaf litterfall is negatively related to the N:P ratio, suggesting that on poor soils, the allocation to photosynthetic organs is prioritized over that to reproduction. Finally, we discuss the ecological and biogeochemical implications of these results.
    Biogeosciences Discussions 07/2009; 6(4). DOI:10.5194/bgd-6-7565-2009
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The net primary productivity (NPP) of tropical forests is one of the most important and least quantified components of the global carbon cycle. Most relevant studies have focused particularly on the quantification of the above-ground coarse wood productivity, and little is known about the carbon fluxes involved in other elements of the NPP, the partitioning of total NPP between its above- and below-ground components and the main environmental drivers of these patterns. In this study we quantify the above- and below-ground NPP of ten Amazonian forests to address two questions: (1) How do Amazonian forests allocate productivity among its above- and below-ground components? (2) How do soil and leaf nutrient status and soil texture affect the productivity of Amazonian forests? Using a standardized methodology to measure the major elements of productivity, we show that NPP varies between 9.3±1.3 Mg C ha−1 yr−1 (mean±standard error), at a white sand plot, and 17.0±1.4 Mg C ha−1 yr−1 at a very fertile Terra Preta site, with an overall average of 12.8±0.9 Mg C ha−1 yr−1. The studied forests allocate on average 64±3% and 36±3% of the total NPP to the above- and below-ground components, respectively. The ratio of above-ground and below-ground NPP is almost invariant with total NPP. Litterfall and fine root production both increase with total NPP, while stem production shows no overall trend. Total NPP tends to increase with soil phosphorus and leaf nitrogen status. However, allocation of NPP to below-ground shows no relationship to soil fertility, but appears to decrease with the increase of soil clay content.
    Biogeosciences 02/2009; 6(1). DOI:10.5194/bg-6-2759-2009 · 3.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pages: 2441-2488