Are you Ralph D'Agostino?

Claim your profile

Publications (5)21.32 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In animal models of partial urethral obstruction (PUO), altered smooth muscle function/contractility may be linked to changes in molecules that regulate calcium signaling/sensitization. PUO was created in male rats, and urodynamic studies were conducted 2 and 6 wk post-PUO. Cystometric recordings were analyzed for the presence or absence of nonvoiding contractions [i.e., detrusor overactivity (DO)]. RT-PCR and Western blots were performed on a subpopulation of rats to study the relationship between the expression of RhoA, L-type Ca(2+) channels, Rho kinase-1, Rho kinase-2, inositol 1,4,5-trisphosphate, ryanodine receptor, sarco(endo)plasmic reticulum Ca(2+)-ATPase 2 and protein kinase C (PKC)-potentiated phosphatase inhibitor of 17 kDa, and urodynamic findings in the same animal. Animals displayed DO at 2 (38%) and 6 wk (43%) post-PUO, increases were seen in in vivo pressures at 2 wk, and residual volume at 6 wk. Statistical analysis of RT-PCR and Western blot data at 2 wk, during the compensatory phase of detrusor hypertrophy, documented that expression of molecules that regulate calcium signaling and sensitization was consistently lower in obstructed rats without DO than those with DO or control rats. Among rats with DO at 2 wk, linear regression analysis revealed positive correlations between in vivo pressures and protein and mRNA expression of several regulatory molecules. At 6 wk, in the presence of overt signs of bladder decompensation, no clear or consistent alterations in expression of these same targets were observed at the protein level. These data extend prior work to suggest that molecular profiling of key regulatory molecules during the progression of PUO-mediated bladder dysfunction may shed new light on potential biomarkers and/or therapeutic targets.
    AJP Renal Physiology 03/2012; 302(12):F1517-28. · 4.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the advent of effective oral therapies for erectile dysfunction (ED), many patients are not successfully treated, and side effects have been documented. To further evaluate the potential utility of naked DNA-based gene transfer as an attractive treatment option for ED. The effects of gene transfer on erectile function and sexual behavior were evaluated in eight male cynomolgus monkeys with ED secondary to moderately severe, diet-induced atherosclerosis. Following establishment of baseline characteristics, animals were subjected to intracavernous injection of a smooth-muscle-specific gene transfer vector (pSMAA-hSlo) encoding the pore-forming subunit of the human large-conductance, calcium-sensitive potassium channel (Maxi-K). For the sexual behavior studies, 2 wk of baseline data were obtained, and then animals were placed in the presence of estrogen-implanted females (n=2) three times per week for 30 min, and sexual behavior was recorded. The intracavernous pressure response to papaverine injection was also monitored. Dramatic changes in erectile function and sexual behavior were observed after intracorporal gene transfer. The frequency of partial (6±2 to 10±2) and full (2±1.5 to 5±1.4) erections were significantly increased, with a parallel 2-3-fold increase in the duration of the observed erections. The frequency and latency of ejaculation were increased and decreased, respectively. Frequency and duration of grooming by the female were increased, and the latency decreased. Increased latency and decreased frequency of body contact was also observed, and this is characteristic of the typical drop in consort intimacy that occurs after mating in most macaque species. In addition, an increased responsiveness to intracavernous papaverine injection was observed. The data indicate that intracorporal Maxi-K-channel gene transfer enhances erectile capacity and sexual behavior; the data imply that increased erectile function per se may lead to increased sexual function.
    European Urology 12/2009; 56(6):1055-66. · 10.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of deleting genes encoding uroplakins II (UPII) and III (UPIIIa) on mouse bladder physiology/dysfunction were studied in male and female wild type and knockout (KO) mice. UPII, UPIIIa, and WT mice were catheterized using previously described techniques. Continuous cystometry was conducted in conscious, freely moving animals. Bladder strips were harvested after animal sacrifice and pharmacological studies and EFS were conducted in an organ chamber. Histological studies were also carried on with H&E staining to identify differences among the three mouse types. These studies have revealed numerous alterations, some of which were apparently gender-specific. Nonvoiding contractions were common in both UPII and UPIIIa KO mice, although more severe in the former. In particular, the increased bladder capacity, micturition pressure and demonstrable nonvoiding contractions observed in the male UPII KO's, were reminiscent of an obstruction-like syndrome accompanied by evidence of emerging bladder decompensation, as reflected by an increased residual volume. Pharmacological studies revealed a modest, gender-specific reduction in sensitivity of isolated detrusor strips from UPII KO female mice to carbachol-induced contractions. A similar reduction was observed in UPIIIa KO female mice. Histological investigation showed urothelial hyperplasia in both UPII KO and UPIIIa KO mice, although again, apparently more severe in the former. These results confirm and extend previous work to indicate that urothelial defects due to uroplakin deficiency are associated with significant alterations in bladder function and further highlight the importance of the urothelium to bladder physiology/dysfunction.
    Neurourology and Urodynamics 03/2009; 28(8):1028-33. · 2.67 Impact Factor
  • The Journal of Urology 04/2008; 179(4):425-426. · 3.75 Impact Factor
  • European Urology Supplements - EUR UROL SUPPL. 01/2008; 7(3):143-143.