Publications (121)553.04 Total impact

[Show abstract] [Hide abstract]
ABSTRACT: We measure the crosscorrelation of cosmic microwave background lensing convergence maps derived from Atacama Cosmology Telescope data with galaxy lensing convergence maps as measured by the CanadaFranceHawaii Telescope Stripe 82 Survey. The CMBgalaxy lensing cross power spectrum is measured for the first time with a significance of 3.2{\sigma}, which corresponds to a 16% constraint on the amplitude of density fluctuations at redshifts ~ 0.9. With upcoming improved lensing data, this novel type of measurement will become a powerful cosmological probe, providing a precise measurement of the mass distribution at intermediate redshifts and serving as a calibrator for systematic biases in weak lensing measurements.Physical Review D 03/2015; 91:062001. DOI:10.1103/PhysRevD.91.062001 · 4.69 Impact Factor 
Article: The Atacama Cosmology Telescope: measuring radio galaxy bias through crosscorrelation with lensing
[Show abstract] [Hide abstract]
ABSTRACT: We correlate the positions of radio galaxies in the FIRST survey with the CMB lensing convergence estimated from the Atacama Cosmology Telescope over 470 square degrees to determine the bias of these galaxies. We remove optically crossmatched sources below redshift $z=0.2$ to preferentially select Active Galactic Nuclei (AGN). We measure the angular crosspower spectrum $C_l^{\kappa g}$ at $4.4\sigma$ significance in the multipole range $100<l<3000$, corresponding to physical scales between $\approx$ 260 Mpc at an effective redshift $z_{\rm eff}= 1.5$. Modelling the AGN population with a redshiftdependent bias, the crossspectrum is well fit by the Planck bestfit $\Lambda$CDM cosmological model. Fixing the cosmology we fit for the overall bias model normalization, finding $b(z_{\rm eff}) = 3.5 \pm 0.8$ for the full galaxy sample, and $b(z_{\rm eff})=4.0\pm1.1 (3.0\pm1.1)$ for sources brighter (fainter) than 2.5 mJy. This measurement characterizes the typical halo mass of radioloud AGN: we find $\log(M_{\rm halo} / M_\odot) = 13.6^{+0.3}_{0.4}$. 
[Show abstract] [Hide abstract]
ABSTRACT: We present results based on fullmission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the sixparameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/ 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/ 0.012 and a scalar spectral index with n_s = 0.968 +/ 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/ 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/ 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be Omega_K < 0.005. For LCDM we find a limit on the tensortoscalar ratio of r <0.11 consistent with the Bmode constraints from an analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP data leads to a tighter constraint of r < 0.09. We find no evidence for isocurvature perturbations or cosmic defects. The equation of state of dark energy is constrained to w = 1.006 +/ 0.045. Standard big bang nucleosynthesis predictions for the Planck LCDM cosmology are in excellent agreement with observations. We investigate annihilating dark matter and deviations from standard recombination, finding no evidence for new physics. The Planck results for base LCDM are in agreement with BAO data and with the JLA SNe sample. However the amplitude of the fluctuations is found to be higher than inferred from rich cluster counts and weak gravitational lensing. Apart from these tensions, the base LCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets. 
[Show abstract] [Hide abstract]
ABSTRACT: We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40 sigma), using temperature and polarization data from the Planck 2015 fullmission release. Using a polarizationonly estimator we detect lensing at a significance of 5 sigma. We crosscheck the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40<L<400 and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the bestfitting LCDM model based on the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percentlevel measurement of the parameter combination Sigma_8 Omega_m^{0.25} = 0.591+0.021. We combine our determination of the lensing potential with the Emode polarization also measured by Planck to generate an estimate of the lensing Bmode. We show that this lensing Bmode estimate is correlated with the Bmodes observed directly by Planck at the expected level and with a statistical significance of 10 sigma, confirming Planck's sensitivity to this known sky signal. We also correlate our lensing potential estimate with the largescale temperature anisotropies, detecting a crosscorrelation at the 3 sigma level, as expected due to dark energy in the concordance LCDM model. 


[Show abstract] [Hide abstract]
ABSTRACT: We report the results of a joint analysis of data from BICEP2/Keck Array and Planck. BICEP2 and Keck Array have observed the same approximately 400 deg$^2$ patch of sky centered on RA 0h, Dec. $57.5\deg$. The combined maps reach a depth of 57 nK deg in Stokes $Q$ and $U$ in a band centered at 150 GHz. Planck has observed the full sky in polarization at seven frequencies from 30 to 353 GHz, but much less deeply in any given region (1.2 $\mu$K deg in $Q$ and $U$ at 143 GHz). We detect 150$\times$353 crosscorrelation in $B$modes at high significance. We fit the single and crossfrequency power spectra at frequencies above 150 GHz to a lensed$\Lambda$CDM model that includes dust and a possible contribution from inflationary gravitational waves (as parameterized by the tensortoscalar ratio $r$). We probe various model variations and extensions, including adding a synchrotron component in combination with lower frequency data, and find that these make little difference to the $r$ constraint. Finally we present an alternative analysis which is similar to a mapbased cleaning of the dust contribution, and show that this gives similar constraints. The final result is expressed as a likelihood curve for $r$, and yields an upper limit $r_{0.05}<0.12$ at 95% confidence. Marginalizing over dust and $r$, lensing $B$modes are detected at $7.0\,\sigma$ significance. 
[Show abstract] [Hide abstract]
ABSTRACT: We present a measurement of the gravitational lensing of the Cosmic Microwave Background (CMB) temperature and polarization fields obtained by crosscorrelating the reconstructed convergence signal from the first season of ACTPol data at 146 GHz with Cosmic Infrared Background (CIB) fluctuations measured using the Planck satellite. Using an overlap area of 206 square degrees, we detect gravitational lensing of the CMB polarization by largescale structure at a statistical significance of 4.5 sigma. Combining both CMB temperature and polarization data gives a lensing detection at 9.1 sigma significance. A Bmode polarization lensing signal is present with a significance of 3.2 sigma. We also present the first measurement of CMB lensingCIB correlation at small scales corresponding to l > 2000. Null tests and systematic checks show that our results are not significantly biased by astrophysical or instrumental systematic effects, including Galactic dust. Fitting our measurements to the bestfit lensingCIB cross power spectrum measured in Planck data, scaled by an amplitude A, gives A=1.02 +0.12/0.18 (stat.) +/0.06(syst.), consistent with the Planck results. 
[Show abstract] [Hide abstract]
ABSTRACT: We present a statistical detection of the gravitational lensing of the cosmic microwave background by $10^{13}$ solar mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter (ACTPol) are stacked at the positions of around 12,000 opticallyselected CMASS galaxies from the SDSSIII/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles, and is favored over a null signal at 3.2 sigma significance. This result demonstrates the potential of microwave background lensing to probe the dark matter distribution in galaxy group and galaxy cluster halos. 
Article: The Atacama Cosmology Telescope: A Measurement of the Thermal SunyaevZel'dovich OnePoint PDF
[Show abstract] [Hide abstract]
ABSTRACT: We present a measurement of the onepoint probability distribution function (PDF) of the thermal SunyaevZel'dovich (tSZ) decrement in the pixel temperature histogram of filtered 148 GHz sky maps from the Atacama Cosmology Telescope (ACT). The PDF includes the signal from all galaxy clusters in the map, including objects below the signaltonoise threshold for individual detection, making it a particularly sensitive probe of the amplitude of matter density perturbations, $\sigma_8$. We use a combination of analytic halo model calculations and numerical simulations to compute the theoretical tSZ PDF and its covariance matrix, accounting for all noise sources and including relativistic corrections. From the measured ACT 148 GHz PDF alone, we find $\sigma_8 = 0.793 \pm 0.018$, with additional systematic errors of $\pm 0.017$ due to uncertainty in intracluster medium gas physics and $\pm 0.006$ due to uncertainty in infrared point source contamination. Using effectively the same data set, the statistical error here is a factor of two lower than that found in ACT's previous $\sigma_8$ determination based solely on the skewness of the tSZ signal. In future temperature maps with higher sensitivity, the tSZ PDF will break the degeneracy between intracluster medium gas physics and cosmological parameters. 



[Show abstract] [Hide abstract]
ABSTRACT: The ESA's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the CMB and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the SZ effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard sixparameter LCDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several largescale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25 sigma. Planck finds no evidence for nonGaussianity in the CMB. Planck's results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluctuations derived from CMB data and that derived from SZ data. The Planck and WMAP power spectra are offset from each other by an average level of about 2% around the first acoustic peak.Astronomy and Astrophysics 11/2014; 571(A1):1. DOI:10.1051/00046361/201321529 · 4.48 Impact Factor 
[Show abstract] [Hide abstract]
ABSTRACT: We analyse the implications of the Planck data for cosmic inflation. The Planck nominal mission temperature anisotropy measurements, combined with the WMAP largeangle polarization, constrain the scalar spectral index to be ns = 0:9603 � 0:0073, ruling out exact scale invariance at over 5�: Planck establishes an upper bound on the tensortoscalar ratio of r < 0:11 (95% CL). The Planck data thus shrink the space of allowed standard inflationary models, preferring potentials with V00 < 0. Exponential potential models, the simplest hybrid inflationary models, and monomial potential models of degree n � 2 do not provide a good fit to the data. Planck does not find statistically significant running of the scalar spectral index, obtaining dns=dln k = 0:0134 � 0:0090. We verify these conclusions through a numerical analysis, which makes no slowroll approximation, and carry out a Bayesian parameter estimation and modelselection analysis for a number of inflationary models including monomial, natural, and hilltop potentials. For each model, we present the Planck constraints on the parameters of the potential and explore several possibilities for the postinflationary entropy generation epoch, thus obtaining nontrivial datadriven constraints. We also present a direct reconstruction of the observable range of the inflaton potential. Unless a quartic term is allowed in the potential, we find results consistent with secondorder slowroll predictions. We also investigate whether the primordial power spectrum contains any features. We find that models with a parameterized oscillatory feature improve the fit by � 2 e� � 10; however, Bayesian evidence does not prefer these models. We constrain several singlefield inflation models with generalized Lagrangians by combining power spectrum data with Planck bounds on fNL. Planck constrains with unprecedented accuracy the amplitude and possible correlation (with the adiabatic mode) of nondecaying isocurvature fluctuations. The fractional primordial contributions of cold dark matter (CDM) isocurvature modes of the types expected in the curvaton and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL), respectively. In models with arbitrarily correlated CDM or neutrino isocurvature modes, an anticorrelated isocurvature component can improve the 2 e� by approximately 4 as a result of slightly lowering the theoretical prediction for the ` <� 40 multipoles relative to the higher multipoles. Nonetheless, the data are consistent with adiabatic initial conditions.Astronomy and Astrophysics 11/2014; 571(A22):1. · 4.48 Impact Factor 
[Show abstract] [Hide abstract]
ABSTRACT: On the arcminute angular scales probed by Planck, the CMB anisotropies are gently perturbed by gravitational lensing. Here we present a detailed study of this effect, detecting lensing independently in the 100, 143, and 217GHz frequency bands with an overall significance of greater than 25sigma. We use the temperaturegradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the CMB lastscattering surface. Our lensing potential map is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of largescale structure. We estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the bestfitting LCDM model for the Planck temperature power spectrum, showing that this measurement at z=1100 correctly predicts the properties of the lowerredshift, latertime structures which source the lensing potential. When combined with the temperature power spectrum, our measurement provides degeneracybreaking power for parameter constraints; it improves CMBalone constraints on curvature by a factor of two and also partly breaks the degeneracy between the amplitude of the primordial perturbation power spectrum and the optical depth to reionization, allowing a measurement of the optical depth to reionization which is independent of largescale polarization data. Discarding scale information, our measurement corresponds to a 4% constraint on the amplitude of the lensing potential power spectrum, or a 2% constraint on the RMS amplitude of matter fluctuations at z~2.Astronomy and Astrophysics 11/2014; 571(A17):1. DOI:10.1051/00046361/201321543 · 4.48 Impact Factor 
[Show abstract] [Hide abstract]
ABSTRACT: The polarized thermal emission from Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100GHz. We exploit the Planck HFI polarization data from 100 to 353GHz to measure the dust angular power spectra $C_\ell^{EE,BB}$ over the range $40<\ell<600$. These will bring new insights into interstellar dust physics and a precise determination of the level of contamination for CMB polarization experiments. We show that statistical properties of the emission can be characterized over large fractions of the sky using $C_\ell$. For the dust, they are well described by power laws in $\ell$ with exponents $\alpha^{EE,BB}=2.42\pm0.02$. The amplitudes of the polarization $C_\ell$ vary with the average brightness in a way similar to the intensity ones. The dust polarization frequency dependence is consistent with modified blackbody emission with $\beta_d=1.59$ and $T_d=19.6$K. We find a systematic ratio between the amplitudes of the Galactic $B$ and $E$modes of 0.5. We show that even in the faintest dustemitting regions there are no "clean" windows where primordial CMB $B$mode polarization could be measured without subtraction of dust emission. Finally, we investigate the level of dust polarization in the BICEP2 experiment field. Extrapolation of the Planck 353GHz data to 150GHz gives a dust power $\ell(\ell+1)C_\ell^{BB}/(2\pi)$ of $1.32\times10^{2}\mu$K$_{CMB}^2$ over the $40<\ell<120$ range; the statistical uncertainty is $\pm0.29$ and there is an additional uncertainty (+0.28,0.24) from the extrapolation, both in the same units. This is the same magnitude as reported by BICEP2 over this $\ell$ range, which highlights the need for assessment of the polarized dust signal. The present uncertainties will be reduced through an ongoing, joint analysis of the Planck and BICEP2 data sets. 
[Show abstract] [Hide abstract]
ABSTRACT: We report on measurements of the cosmic microwave background (CMB) and celestial polarization at 146 GHz made with the Atacama Cosmology Telescope Polarimeter (ACTPol) in its first three months of observing. Four regions of sky covering a total of 270 square degrees were mapped with an angular resolution of $1.3'$. The map noise levels in the four regions are between 11 and 17 $\mu$Karcmin. We present TT, TE, EE, TB, EB, and BB power spectra from three of these regions. The observed Emode polarization power spectrum, displaying six acoustic peaks in the range $200<\ell<3000$, is an excellent fit to the prediction of the bestfit cosmological models from WMAP9+ACT and Planck data. The polarization power spectrum, which mainly reflects primordial plasma velocity perturbations, provides an independent determination of cosmological parameters consistent with those based on the temperature power spectrum, which results mostly from primordial density perturbations. We find that without masking any point sources in the EE data at $\ell<9000$, the Poisson tail of the EE power spectrum due to polarized point sources has an amplitude less than $2.4$ $\mu$K$^2$ at $\ell = 3000$ at 95\% confidence. Finally, we report that the Crab Nebula, an important polarization calibration source at microwave frequencies, has 8.7\% polarization with an angle of $150.9^\circ \pm 0.5^\circ$ when smoothed with a $5'$ Gaussian beam.Journal of Cosmology and Astroparticle Physics 05/2014; JCAP10(2014)007. DOI:10.1088/14757516/2014/10/007 · 5.88 Impact Factor 
Article: Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust
[Show abstract] [Hide abstract]
ABSTRACT: This paper presents the largescale polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse largescale maps of dust polarization fraction and polarization direction, while taking account of noise bias and possible systematic effects. We find that the maximum observed dust polarization fraction is high (pmax > 18%), in particular in some of the intermediate dust column density (AV < 1mag) regions. There is a systematic decrease in the dust polarization fraction with increasing dust column density, and we interpret the features of this correlation in light of both radiative grain alignment predictions and fluctuations in the magnetic field orientation. We also characterize the spatial structure of the polarization angle using the angle dispersion function and find that, in nearby fields at intermediate latitudes, the polarization angle is ordered over extended areas that are separated by filamentary structures, which appear as interfaces where the magnetic field sky projection rotates abruptly without apparent variations in the dust column density. The polarization fraction is found to be anticorrelated with the dispersion of the polarization angle, implying that the variations are likely due to fluctuations in the 3D magnetic field orientation along the line of sight sampling the diffuse interstellar medium.We also compare the dust emission with the polarized synchrotron emission measured with the Planck LFI, with lowfrequency radio data, and with Faraday rotation measurements of extragalactic sources. The two polarized components are globally similar in structure along the plane and notably in the Fan and North Polar Spur regions. A detailed comparison of these three tracers shows, however, that dust and cosmic rays generally sample different parts of the line of sight and confirms that much of the variation observed in the Planck data is due to the 3D structure of the magnetic field. 
[Show abstract] [Hide abstract]
ABSTRACT: Planck has mapped the intensity and polarization of the sky at microwave frequencies with unprecedented sensitivity. We make use of the Planck 353 GHz I, Q, and U Stokes maps as dust templates, and crosscorrelate them with the Planck and WMAP data at 12 frequencies from 23 to 353 GHz, over circular patches with 10 degree radius. The crosscorrelation analysis is performed for both intensity and polarization data in a consistent manner. We use a mask that focuses our analysis on the diffuse interstellar medium at intermediate Galactic latitudes. We determine the spectral indices of dust emission in intensity and polarization between 100 and 353 GHz, for each skypatch. The mean values, $1.63\pm0.03$ for polarization and $1.52\pm0.02$ for intensity, for a mean dust temperature of 18.7 K, are close, but significantly different. We determine the mean spectral energy distribution (SED) of the microwave emission, correlated with the 353 GHz dust templates, by averaging the results of the correlation over all skypatches. We find that the mean SED increases for decreasing frequencies at $\nu < 60$ GHz, for both intensity and polarization. The rise of the polarization SED towards low frequencies may be accounted for by a synchrotron component correlated with dust, with no need for any polarization of the anomalous microwave emission. We use a spectral model to separate the synchrotron and dust polarization and to characterize the spectral dependence of the dust polarization fraction. The polarization fraction ($p$) of the dust emission decreases by $(34\pm10)$ % from 353 to 70 GHz. The decrease of $p$ could indicate differences in polarization efficiency among components of interstellar dust (e.g., carbon versus silicate grains), or, alternatively, it could be a signature of magnetic dipole emission from ferromagnetic inclusions within interstellar grains.
Publication Stats
13k  Citations  
553.04  Total Impact Points  
Top Journals
Institutions

2004–2015

University of Oxford
Oxford, England, United Kingdom


2012–2013

University of Toronto
 Canadian Institute for Theoretical Astrophysics
Toronto, Ontario, Canada 
The University of Tokyo
 Institute for the Physics and Mathematics of the Universe (IPMU)
Edo, Tōkyō, Japan 
Johns Hopkins University
 Department of Physics and Astronomy
Baltimore, Maryland, United States


2006–2012

Princeton University
 • Department of Astrophysical Sciences
 • Department of Physics
Princeton, New Jersey, United States


2011

University of California, Berkeley
 Department of Physics
Berkeley, MO, United States


2010

Lawrence Berkeley National Laboratory
 Physics Division
Berkeley, California, United States
