V S Goldmacher

ImmunoGen, Inc., Waltham, Massachusetts, United States

Are you V S Goldmacher?

Claim your profile

Publications (83)499.81 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: The CD38 cell surface antigen is expressed in diverse hematologic malignancies including multiple myeloma (MM), B-cell non-Hodgkin lymphoma (NHL), B-cell chronic lymphocytic leukemia (B-CLL), B-cell acute lymphoblastic leukemia (ALL) and T-cell ALL. Here we assessed the anti-tumor activity of the anti-CD38 antibody SAR650984. Experimental Design: Activity of SAR650984 was examined on lymphoma, leukemia and MM cell lines, primary MM samples and MM xenograft models in immunodeficient mice. Results: We identified a humanized anti-CD38 antibody with strong pro-apoptotic activity independent of cross-linking agents, and potent effector functions including complement-dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), and antibody-dependent cellular phagocytosis (ADCP), equivalent in vitro to rituximab in CD20+ and CD38+ models. This unique antibody, termed SAR650984, inhibited the ADP-ribosyl cyclase activity of CD38, likely through an allosteric antagonism as suggested by 3D structure analysis of the complex. In vivo, SAR650984 was active in diverse NHL, ALL and MM CD38+ tumor xenograft models. SAR650984 demonstrated single agent activity comparable to rituximab or cyclophosphamide in Daudi or SU-DHL-8 lymphoma xenograft models with induction of the pro-apoptotic marker cleaved capase 7. In addition, SAR650984 had more potent anti-tumor activity than bortezomib in NCI-H929 and Molp-8 MM xenograft studies. Consistent with its mode of action, SAR650984 demonstrated potent pro-apoptotic activity against CD38+ human primary MM cells. Conclusions: These results validate CD38 as a therapeutic target and support the current evaluation of this unique CD38-targeting functional antibody in Phase I clinical trials in patients with CD38+ B-cell malignancies.
    Clinical Cancer Research 07/2014; · 8.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There are considerable differences in tumour biology between adult and paediatric cancers. The existence of cancer initiating cells/cancer stem cells (CIC/CSC) in paediatric solid tumours is currently unclear. Here, we show the successful propagation of primary human Wilms' tumour (WT), a common paediatric renal malignancy, in immunodeficient mice, demonstrating the presence of a population of highly proliferative CIC/CSCs capable of serial xenograft initiation. Cell sorting and limiting dilution transplantation analysis of xenograft cells identified WT CSCs that harbour a primitive undifferentiated - NCAM1 expressing - "blastema" phenotype, including a capacity to expand and differentiate into the mature renal-like cell types observed in the primary tumour. WT CSCs, which can be further enriched by aldehyde dehydrogenase activity, overexpressed renal stemness and genes linked to poor patient prognosis, showed preferential protein expression of phosphorylated PKB/Akt and strong reduction of the miR-200 family. Complete eradication of WT in multiple xenograft models was achieved with a human NCAM antibody drug conjugate. The existence of CIC/CSCs in WT provides new therapeutic targets. →See accompanying article http://dx.doi.org/10.1002/emmm.201202173.
    EMBO Molecular Medicine 12/2012; · 7.80 Impact Factor
  • C. Audette, Y. Kovtun, V. S. Goldmacher
    Cancer Research 06/2012; 72(8 Supplement):5677-5677. · 9.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The synthesis and biological evaluation of phosphate prodrugs of analogues of 1 (CC-1065) and their conjugates with antibodies are described. The phosphate group on the 1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one (CBI) portion of the compounds confers enhanced solubility and stability in aqueous solutions. In the presence of phosphatases, these compounds convert into active DNA-alkylating agents. The synthesis of the prodrugs was achieved sequentially through coupling of CBI with a bis-indolyl moiety, followed by attachment of a thiol-containing linker, and conversion of the hydroxyl group of CBI into a phosphate prodrug. The linkers incorporated into the prodrugs enable conjugation to an antibody via either a stable disulfide or thioether bond, in aqueous buffer solutions containing as little as 5% organic cosolvent, resulting in exclusively monomeric and stable antibody-cytotoxic prodrug conjugates. Two disulfide-containing linkers differing in the degree of steric hindrance were used in antibody conjugates to test the effect of different rates of intracellular disulfide cleavage and effector release on biological activity. The prodrugs can be converted to the active cytotoxic compounds through the action of endogenous phosphatases. Antibody-prodrug conjugates displayed potent antigen-selective cytotoxic activity in vitro and antitumor activity in vivo.
    Journal of Medicinal Chemistry 12/2011; 55(2):766-82. · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The synthesis and biological evaluation of hydrophilic heterobifunctional cross-linkers for conjugation of antibodies with highly cytotoxic agents are described. These linkers contain either a negatively charged sulfonate group or a hydrophilic, noncharged PEG group in addition to an amine-reactive N-hydroxysuccinimide (NHS) ester and sulfhydryl reactive termini. These hydrophilic linkers enable conjugation of hydrophobic organic molecule drugs, such as a maytansinoid, at a higher drug/antibody ratio (DAR) than hydrophobic SPDB and SMCC linkers used earlier without triggering aggregation or loss of affinity of the resulting conjugate. Antibody-maytansinoid conjugates (AMCs) bearing these sulfonate- or PEG-containing hydrophilic linkers were, depending on the nature of the targeted cells, equally to more cytotoxic to antigen-positive cells and equally to less cytotoxic to antigen-negative cells than conjugates made with SPDB or SMCC linkers and thus typically displayed a wider selectivity window, particularly against multidrug resistant (MDR) cancer cell lines in vitro and tumor xenograft models in vivo.
    Journal of Medicinal Chemistry 05/2011; 54(10):3606-23. · 5.48 Impact Factor
  • Victor S Goldmacher, Yelena V Kovtun
    [Show abstract] [Hide abstract]
    ABSTRACT: One approach to improving activity of anticancer drugs is to conjugate them to antibodies that recognize tumor-associated, cell-surface antigens. The antibody-drug conjugate concept evolved following major advances, first, in the development of humanized and fully human antibodies; second, in the discoveries of highly cytotoxic compounds ('drugs) linkable to antibodies; and finally, in the optimization of linkers that couple the drug to the antibody and provide sufficient stability of the antibody-drug conjugate in the circulation, optimal activation of the drug in the tumor, and the ability of the activated drug to overcome multidrug resistance. In this article, we will review the considerations for selecting a target antigen, the design of the conjugate, and the pre-clinical and clinical experiences with the current generation of antibody-drug conjugates.
    Therapeutic delivery 03/2011; 2(3):397-416.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Conjugation of cytotoxic compounds to antibodies that bind to cancer-specific antigens makes these drugs selective in killing cancer cells. However, many of the compounds used in such antibody-drug conjugates (ADC) are substrates for the multidrug transporter MDR1. To evade the MDR1-mediated resistance, we conjugated the highly cytotoxic maytansinoid DM1 to antibodies via the maleimidyl-based hydrophilic linker PEG(4)Mal. Following uptake into target cells, conjugates made with the PEG(4)Mal linker were processed to a cytotoxic metabolite that was retained by MDR1-expressing cells better than a metabolite of similar conjugates prepared with the nonpolar linker N-succinimidyl-4-(maleimidomethyl)cyclohexane-1-carboxylate (SMCC). In accord, PEG(4)Mal-linked conjugates were more potent in killing MDR1-expressing cells in culture. In addition, PEG(4)Mal-linked conjugates were markedly more effective in eradicating MDR1-expressing human xenograft tumors than SMCC-linked conjugates while being tolerated similarly, thus showing an improved therapeutic index. This study points the way to the development of ADCs that bypass multidrug resistance.
    Cancer Research 03/2010; 70(6):2528-37. · 9.28 Impact Factor
  • Carol A. Vater, Victor S. Goldmacher
    [Show abstract] [Hide abstract]
    ABSTRACT: The original rationale underlying the development of antibody–cytotoxic compound conjugates (ACC) was to improve the selectivity of cytotoxic anti-cancer drugs by targeting them to tumors with the help of antibodies. The ACC concept has since matured significantly, following several key advancements: (i) generation of technologies for creating humanized and fully human monoclonal antibodies; (ii) development of conjugatable cytotoxic compounds of sufficient potency to be effective in eradicating tumor cells in an antigen-selective manner; (iii) advances in knowledge and antibody engineering to maximize anti-tumor cell effect or functions; and (iv) optimization of linkers used to conjugate cytotoxic compounds to antibodies in order to achieve both maximal stability of the ACC in the circulation and maximal release of the active cytotoxic component within targeted tumor cells. In this chapter we will focus on our present understanding of what makes an effective ACC for the treatment of oncology patients. We will discuss parameters that are important for the selection of antigen targets, antibodies, cytotoxic compounds, and linkers, and current approaches being taken to further improve the efficacy of ACCs. In addition, we will review preclinical and clinical experiences with the current generation of ACCs.
    12/2009: pages 331-369;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis is a major problem in animal cell cultures during production of biopharmaceuticals, such as recombinant proteins or viral vectors. A 293 cell line constitutively expressing vMIA (viral mitochondria-localized inhibitor of apoptosis) was constructed and examined on production of a model recombinant protein, green fluorescent protein (GFP) in the adenovirus-293 expression system, and on production of a model infectious adenoviral vector. vMIA-293 cells were more resistant than the parental 293 cells to apoptosis induced by either oxidative stress, or by adenovirus infection. The yield of GFP produced in vMIA-293 cell cultures was consistently higher (approximately 140%) compared to that in the parental cells. vMIA reduced production of adenovirus infectious particles, which was not due to a decline of adenovirus replication, since adenoviral DNA replication rate in vMIA-293 cells was higher than that in the parental cells. In conclusion, introduction of the vMIA gene into the 293 cell line is a promising strategy to improve recombinant protein production in the adenovirus-293 expression system.
    Protein Expression and Purification 12/2008; 64(2):179-84. · 1.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis is increasingly implicated as an early line of defense against viral infections. Viruses have devised numerous strategies to delay apoptosis of infected cells. Many viruses encode cell death suppressors that target mitochondrial apoptotic signaling pathway, indicating the importance of this pathway in the anti-viral response. Human and primate cytomegaloviruses encode the viral mitochondria-localized inhibitor of apoptosis vMIA, but no overt homologue of vMIA was identified in any non-primate cytomegalovirus. Here we report that m38.5 protein encoded by murine cytomegalovirus, which is unrelated to vMIA in its amino acid sequence, delays death receptor ligation-induced cell death, and that m38.5 associates with Bax, recruits it to mitochondria, and blocks Bax-mediated but not Bak-mediated mitochondrial outer membrane permeabilization. Thus, primate and murine cytomegaloviruses have evolved non-homologous but functionally similar cell death suppressors selectively targeting the Bax-mediated branch of the mitochondrial apoptotic signaling pathway, indicating the importance of this branch in the response of diverse host organisms against cytomegalovirus infections.
    Apoptosis 10/2008; 13(9):1100-10. · 3.61 Impact Factor
  • EJC Supplements 10/2008; 6(12):164-164. · 2.71 Impact Factor
  • Source
    British Journal of Haematology 05/2008; 141(1):129-31. · 4.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The viral mitochondrial inhibitor of apoptosis (vMIA) encoded by the human cytomegalovirus exerts cytopathic effects and neutralizes the proapoptotic endogenous Bcl-2 family member Bax by recruiting it to mitochondria, inducing its oligomerization and membrane insertion. Using a combination of computational modeling and mutational analyses, we addressed the structure-function relationship of the molecular interaction between the protein Bax and the viral antiapoptotic protein vMIA. We propose a model in which vMIA exhibits an overall fold similar to Bcl-X(L). In contrast to Bcl-X(L), however, this predicted conformation of vMIA does not bind to the BH3 domain of Bax and rather engages in electrostatic interactions that involve a stretch of amino acids between the BH3 and BH2 domains of Bax and an alpha-helical domain located within the previously defined Bax-binding domain of vMIA, between the putative BH1-like and BH2-like domains. According to this model, vMIA is likely to bind Bax preferentially in its membrane-inserted conformation. The capacity of vMIA to cause fragmentation of the mitochondrial network and disorganization of the actin cytoskeleton is independent of its Bax-binding function. We found that Delta131-147 vMIA mutant, which lacks both the Bax-binding function and cell-death suppression but has intact mitochondria-targeting capacity, is similar to vMIA in its ability to disrupt the mitochondrial network and to disorganize the actin cytoskeleton. vMIADelta131-147 is a dominant-negative inhibitor of the antiapoptotic function of wild-type vMIA. Our experiments with vMIADelta131-147 suggest that vMIA forms homo-oligomers, which may engage in cooperative and/or multivalent interactions with Bax, leading to its functional neutralization.
    Oncogene 12/2007; 26(50):7067-80. · 8.56 Impact Factor
  • Yelena V Kovtun, Victor S Goldmacher
    [Show abstract] [Hide abstract]
    ABSTRACT: Antibody-drug conjugates (ADCs) are designed to specifically bind to and kill cells expressing their target antigens. In addition to the obvious requirement of the presence of the target antigen on the cell surface, several other factors contribute to the sensitivity of target cells to the action of ADCs. These include (i) the rate of internalization of the ADC, (ii) its proteolytic degradation in late endosomes and lysosomes and the subsequent release of cytotoxic drug, and (iii) the intracellular concentration of the released drug. In addition to killing antigen-expressing cells, some ADCs were found to kill bystander cells irrespective of their antigen expression. This review summarizes the current knowledge of the mechanisms of killing of antigen-expressing and bystander cells by antibody-drug conjugates.
    Cancer Letters 11/2007; 255(2):232-40. · 5.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: EC131, a new folate receptor (FR)-targeted drug conjugate, was prepared by covalently attaching the vitamin folic acid (FA) to a potent microtubule-inhibiting agent, maytansinoid DM1, via an intramolecular disulfide bond. When tested on cells in culture, EC131 was found to retain high affinity for FR-positive cells and to provide FR-specific cytotoxicity with an IC(50) in the low nanomolar range. The activity of EC131 was completely blocked in the presence of an excess of free FA, and no activity was detected against FR-negative cells. When evaluated against s.c. FR-positive M109 tumors in BALB/c mice, EC131 showed marked antitumor efficacy. Furthermore, this therapeutic effect occurred in the apparent absence of weight loss or noticeable organ tissue degeneration. In contrast, no significant antitumor activity was observed in EC131-treated animals that were codosed with an excess of FA, thus demonstrating the targeted specificity of the in vivo activity. EC131 also showed marked antitumor activity against FR-positive human KB tumors, but not against FR-negative A549 tumors, in nude mice with no evidence of systemic toxicity during or after the therapy. In contrast, therapy with the free maytansinoid drug (in the form of DM1-S-Me) proved not to be effective against the KB model when administered at its maximum tolerated dose (MTD). Taken together, these results indicate that EC131 is a highly potent agent capable of producing therapeutic benefit in murine tumor models at sub-MTD levels.
    Cancer Research 08/2007; 67(13):6376-82. · 9.28 Impact Factor
  • EJC Supplements 11/2006; 4(12):67-67. · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Replication of human cytomegalovirus (CMV) requires the expression of the viral mitochondria-localized inhibitor of apoptosis (vMIA). vMIA inhibits apoptosis by recruiting Bax to mitochondria, resulting in its neutralization. We show that vMIA decreases cell size, reduces actin polymerization, and induces cell rounding. As compared with vMIA-expressing CMV, vMIA-deficient CMV, which replicates in fibroblasts expressing the adenoviral apoptosis suppressor E1B19K, induces less cytopathic effects. These vMIA effects can be separated from its cell death-inhibitory function because vMIA modulates cellular morphology in Bax-deficient cells. Expression of vMIA coincided with a reduction in the cellular adenosine triphosphate (ATP) level. vMIA selectively inhibited one component of the ATP synthasome, namely, the mitochondrial phosphate carrier. Exposure of cells to inhibitors of oxidative phosphorylation produced similar effects, such as an ATP level reduced by 30%, smaller cell size, and deficient actin polymerization. Similarly, knockdown of the phosphate carrier reduced cell size. Our data suggest that the cytopathic effect of CMV can be explained by vMIA effects on mitochondrial bioenergetics.
    The Journal of Cell Biology 10/2006; 174(7):985-96. · 9.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human cytomegalovirus (HCMV) UL37 glycoprotein (gpUL37) is internally cleaved and its products divergently traffic to mitochondria or are retained in the secretory pathway. To define the requirements for gpUL37 cleavage, residues -1 and -3 of the consensus endoplasmic reticulum (ER) signal peptidase I site within exon 3 (UL37x3) were replaced by bulky tyrosines (gpUL37 cleavage site mutant I). Internal cleavage of this UL37x3 mutant was inhibited, verifying usage of the consensus site at amino acids (aa) 193/194. The full-length mitochondrial species of gpUL37 cleavage site mutant I was N glycosylated and endoglycosidase H sensitive, indicating that ER translocation and processing took place prior to its mitochondrial importation. Moreover, these results suggest that internal cleavage of gpUL37 is not necessary for its N glycosylation. Partial deletion or disruption of the UL37 hydrophobic core immediately upstream of the cleavage site resulted in decreased protein abundance, suggesting that the UL37x3 hydrophobic alpha-helix contributes to either correct folding or stability of gpUL37. Insertion of the UL37x3 hydrophobic core and cleavage site into pUL37(M), a splice variant of gpUL37 which lacks these sequences and is neither proteolytically cleaved nor N glycosylated, resulted in its internal cleavage and N glycosylation. Its NH(2)-terminal fragment, pUL37(M-NH2), was detected more abundantly in mitochondria, while its N-glycosylated C-terminal fragment, gpUL37(M-COOH), was detected predominantly in the ER in a manner analogous to that of gpUL37 cleavage products. These results indicate that UL37x3 aa 178 to 205 are prerequisite for gpUL37 internal cleavage and alter UL37 protein topology allowing N glycosylation of its C-terminal sequences. In contrast, the NH(2)-terminal UL37x1 hydrophobic leader, present in pUL37x1, pUL37(M), and gpUL37, is not cleaved from mature UL37 protein, retaining a membrane anchor for UL37 isoforms during trafficking. Taken together, these results suggest that HCMV gpUL37 undergoes sequential trafficking, during which it is ER translocated, processed, and then mitochondrially imported.
    Journal of Virology 08/2006; 80(14):6771-83. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maytansine, a highly cytotoxic natural product, failed as an anticancer agent in human clinical trials because of unacceptable systemic toxicity. The potent cell killing ability of maytansine can be used in a targeted delivery approach for the selective destruction of cancer cells. A series of new maytansinoids, bearing a disulfide or thiol substituent were synthesized. The chain length of the ester side chain and the degree of steric hindrance on the carbon atom bearing the thiol substituent were varied. Several of these maytansinoids were found to be even more potent in vitro than maytansine. The targeted delivery of these maytansinoids, using monoclonal antibodies, resulted in a high, specific killing of the targeted cells in vitro and remarkable antitumor activity in vivo.
    Journal of Medicinal Chemistry 08/2006; 49(14):4392-408. · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antibody-drug conjugates are targeted anticancer agents consisting of a cytotoxic drug covalently linked to a monoclonal antibody for tumor antigen-specific activity. Once bound to the target cell-surface antigen, the conjugate must be processed to release an active form of the drug, which can reach its intracellular target. Here, we used both biological and biochemical methods to better define this process for antibody-maytansinoid conjugates. In particular, we examined the metabolic fate in cells of huC242-maytansinoid conjugates containing either a disulfide linker (huC242-SPDB-DM4) or a thioether linker (huC242-SMCC-DM1). Using cell cycle analysis combined with lysosomal inhibitors, we showed that lysosomal processing is required for the activity of antibody-maytansinoid conjugates, irrespective of the linker. We also identified and characterized the released maytansinoid molecules from these conjugates, and measured their rate of release compared with the kinetics of cell cycle arrest. Both conjugates are efficiently degraded in lysosomes to yield metabolites consisting of the intact maytansinoid drug and linker attached to lysine. The lysine adduct is the sole metabolite from the thioether-linked conjugate. However, the lysine metabolite generated from the disulfide-linked conjugate is reduced and S-methylated to yield the lipophilic and potently cytotoxic metabolite, S-methyl-DM4. These findings provide insight into the mechanism of action of antibody-maytansinoid conjugates in general, and more specifically, identify a biochemical mechanism that may account for the significantly enhanced antitumor efficacy observed with disulfide-linked conjugates.
    Cancer Research 05/2006; 66(8):4426-33. · 9.28 Impact Factor

Publication Stats

3k Citations
499.81 Total Impact Points


  • 1989–2012
    • ImmunoGen, Inc.
      Waltham, Massachusetts, United States
  • 2008
    • Université Paris-Sud 11
      Orsay, Île-de-France, France
  • 2004
    • National Institutes of Health
      Maryland, United States
  • 2003
    • Stanford University
      • Department of Microbiology and Immunology
      Stanford, CA, United States
    • Stony Brook University
      • Department of Chemistry
      Stony Brook, NY, United States
  • 1988–1989
    • Dana-Farber Cancer Institute
      Boston, Massachusetts, United States
  • 1984
    • Kemerovo Cardiology Centre
      Shcheglovsk, Kemerovo, Russia