T. Di Iorio

ENEA, Roma, Latium, Italy

Are you T. Di Iorio?

Claim your profile

Publications (42)54.16 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The ExoMars/Ma_Miss instrument is a miniaturized spectrometer that will observe the Martian subsoil in the visible and near infrared range (VNIR, 0.4–2.2 μm) with high spatial resolution, 120 μm. It will be integrated in the Drilling system of the Pasteur Rover of the ExoMars 2018 mission, and will acquire reflectance spectra of the borehole wall performed by the Drill, at various depths down to 2 meters. The laboratory breadboard instrument consists of the main subsystems: illumination system, optical fibres for illumination and signal collection, and optical elements for light focusing. It has been interfaced with a commercial spectrometer, the FieldSpec Pro©. The primary aim of this work is to compare the VNIR measurements and spectral parameters derived from the spectra acquired with the Ma_Miss breadboard and with a second laboratory setup. Reflectance spectra have been acquired on a set of six rock powder samples representative of Martian soil. Nine different grain size ranges of each sample have been measured with the breadboard and five spectral parameters were used to explore the Ma_Miss spectra. Those data were compared with spectra acquired by the FieldSpec Pro ® coupled with a goniometer. The analyses of these spectral parameters evidence the correlation between the VNIR continuum slope and the grain size, and the correlation between the reflectance and the grain size; both the parameters tend to decrease as the grain size increases. The trends observed with Ma_Miss breadboard for NIR and VNIR slopes and for the reflectance are clearly consistent with the trends observed with the spectro-goniometer setup, although small differences are seen that can be explained with the different viewing geometries of the two instruments. Ma_Miss proves to have great capabilities for extracting spectroscopic information to constrain the mineralogy and some physical parameters of the analysed material.
    Planetary and Space Science 01/2014; · 2.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The InfraRed Auroral Mapper (JIRAM) is simultaneously an imager and a spectrometer on board of the Juno mission. Jupiter's reflected and emitted light in the range 2-5 μm can be sensed through its spectral channel and H3+ emissions analyzed to retrieve auroral parameters. JIRAM is also able to map the infrared Jupiter aurora in the 3.5 μm and planet's thermal emissions in the 5 μm wavelength ranges through its L-band and M-band imager filters . The main scientific goals are the study of auroras, hot spots and other Jupiter atmospheric structures detectable in its working spectral range. Concurrently with the Juno Earth fly-by, that will occur on October 9th of this current year, JIRAM will observe the Moon during its transit approaching the Earth. As the instrument's temperature cannot be actively controlled, operating with a passive cooling system, the Earth will not be observed during the closest approach. A dramatic temperature increase of the instrument, far above its performance limit, is expected in fact by the illumination of the instrument's cooling radiators due to our planet reflection of the solar illumination. The Moon will be the only chance for an extended target observation that JIRAM can experience before Jupiter. Consequently, this opportunity is of pivotal importance being the only chance for a real in-flight test to verify the instrument performances and the radiometric calibration in real observational set up. The instrument will be operated in the same functional configuration that it will use at Jupiter. So far, the only absolute radiometric calibration has been performed in lab during the on ground calibration and functional test sessions. The internal calibration unit is mainly devoted to the spectral calibration checking while the absolute radiometric calibration has to verified and confirmed in flight. Results of lunar observations will be presented.
    AGU Fall Meeting Abstracts. 12/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present correlated studies of spectroscopy, petrology and chemistry of howadites, and discuss them in relation to Dawn mission results.
    Meteoritics and Planetary Science Supplement. 09/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The urban forcing on thermo-dynamical conditions can largely influences local evolution of the atmospheric boundary layer. Urban heat storage can produce noteworthy mesoscale perturbations of the lower atmosphere. The new generations of high-resolution numerical weather prediction models (NWP) is nowadays largely applied also to urban areas. It is therefore critical to reproduce correctly the urban forcing which turns in variations of wind, temperature and water vapor content of the planetary boundary layer (PBL). WRF-ARW, a new model generation, has been used to reproduce the circulation in the urban area of Rome. A sensitivity study is performed using different PBL and surface schemes. The significant role of the surface forcing in the PBL evolution has been verified by comparing model results with observations coming from many instruments (LiDAR, SODAR, sonic anemometer and surface stations). The crucial role of a correct urban representation has been demonstrated by testing the impact of different urban canopy models (UCM) on the forecast. Only one of three meteorological events studied will be presented, chosen as statistically relevant for the area of interest. The WRF-ARW model shows a tendency to overestimate vertical transmission of horizontal momentum from upper levels to low atmosphere, that is partially corrected by local PBL scheme coupled with an advanced UCM. Depending on background meteorological scenario, WRF-ARW shows an opposite behavior in correctly representing canopy layer and upper levels when local and non local PBL are compared. Moreover a tendency of the model in largely underestimating vertical motions has been verified.
    Atmospheric Measurement Techniques Discussions. 06/2013; 6(3):5297-5344.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Ma_Miss (Mars Multispectral Imager for Subsurface Studies) instrument onboard the ExoMars 2018 mission will investigate the martian subsoil in the VNIR range.
    03/2013;
  • 7th International Workshop on Sand/Duststorms and Associated Dustfall, Francati (Rome), Italy; 01/2013
  • AGU2013 Meeting, San Francisco (USA); 01/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: The seasonal evolution of the tropospheric aerosol vertical distribution and of its optical properties is investigated using lidar and multi-filter rotating shadow-band radiometer (MFRSR) measurements collected throughout the period 2006–2009 in the urban environment of Rome. The evolution of the aerosol distribution is studied also in relation to long range transport of dust.Hybrid Single-Particle Lagrangian Integrated Trajectory model backward trajectories are used to identify possible aerosol sources in remote regions.Aerosol optical depth at 500 nm, τ, and Ångström exponent, α, are derived from MFRSR measurements. The Ångström exponent generally displays relatively high values, indicating the predominance of fine particle over the entire column. The average optical depth at 500 nm and Ångström exponent over the whole period are 0.18 ± 0.09 and 1.12 ± 0.39, respectively. Cases affected by Saharan dust (class 1) are separated from those not influenced by dust (class 0) by using backward trajectories. The average values of τ and α are 0.17 ± 0.08 and 1.17 ± 0.36 for class 0, respectively, and 0.22 ± 0.09 and 0.95 ± 0.46 for class 1.About 214 days of lidar measurements are selected for the analysis. The aerosol vertical distribution is influenced by dust events that induce a marked seasonal behaviour. Desert dust generally reaches higher altitudes than other aerosol types; the maxima altitudes are observed during Spring and Summer, when the monthly average altitude exceeds 5 km. The annual average occurrence of desert dust is 27%, with maxima in Spring and in the first part of Summer. The decrease in the dust event frequency observed in winter months is mainly linked to the seasonal behaviour of the synoptic circulation in the Mediterranean. According to the back-trajectories aerosols are primarily observed below 3 km altitude throughout the year when classified as not affected by desert dust. The extinction coefficient vertical profiles for the two classes show largest differences during Spring and Summer. The extinction for non-dust profiles decreases monotonically with altitude throughout the year, except in Summer. Conversely, the aerosol extinction coefficient shows a relative minimum at the lowest sounded altitude, always except in winter, for class 1 cases. A winter maximum of the aerosol is evidently present in winter in the lower troposphere. Using the MFRSR optical depth and the lidar profiles, the lidar ratio was derived. The overall average lidar ratio is 58 sr.
    Atmospheric Research 11/2012; 118:205–214. · 2.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ma_Miss is the spectrometer fully integrated with the drill system of the ExoMars Rover mission 2018. For the first time in Mars exploration, the water and geochemical environment will be investigated as function of depth in the shallow subsurface.
    LPI Contributions. 10/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Raman lidar system BASIL was operational in Achern (Black Forest) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). The system performed continuous measurements over a period of approx. 36 h from 06:22 UTC on 1 August to 18:28 UTC on 2 August 2007, capturing the signature of a severe Saharan dust outbreak episode. The data clearly reveal the presence of two almost separate aerosol layers: a lower layer located between 1.5 and 3.5 km above ground level (a.g.l.) and an upper layer extending between 3.0 and 6.0 km a.g.l. The time evolution of the dust cloud is illustrated and discussed in the paper in terms of several optical parameters (particle backscatter ratio at 532 and 1064 nm, the colour ratio and the backscatter Angström parameter).An inversion algorithm was used to retrieve particle size and microphysical parameters, i.e., mean and effective radius, number, surface area, volume concentration, and complex refractive index, as well as the parameters of a bimodal particle size distribution (PSD), from the multi-wavelength lidar data of particle backscattering, extinction and depolarization. The retrieval scheme employs Tikhonov’s inversion with regularization and makes use of kernel functions for randomly oriented spheroids. Size and microphysical parameters of dust particles are estimated as a function of altitude at different times during the dust outbreak event. Retrieval results reveal the presence of a fine mode with radii of 0.1–0.2 μm and a coarse mode with radii of 3–5 μm both in the lower and upper dust layers, and the dominance in the upper dust layer of a coarse mode with radii of 4–5 μm. Effective radius varies with altitude in the range 0.1–1.5 μm, while volume concentration is found to not exceed 92 μm3 cm−3. The real and imaginary part of the complex refractive index vary in the range 1.4–1.6 and 0.004–0.008, respectively.Highlights► Dust size and microphysical parameters determined from multi-wavelength lidar data. ► Application of a retrieval scheme using kernel functions for spheroidal particles. ► Lidar measurements compared with simultaneous photometer and literature data. ► Measurements reveal a partial hygroscopic behaviour of the sounded dust particles. ► Results allow to identify the deliquescence point and to compute the growth factor.
    Atmospheric Environment 04/2012; 50:66-78. · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The planetary boundary layer includes the portion of the atmosphere which is directly influenced by the presence of the Earth's surface. Aerosol particles trapped within the PBL can be used as tracers to study boundary-layer vertical structure and time variability. Aerosols can be dispersed out of the PBL during strong convection or temporary breaks of the capping temperature inversion. As a result of this, elastic backscatter signals collected by lidar systems can be used to determine the height and the internal structure of the PBL. Our analysis considers a method based on the first order derivative of the range-corrected elastic signal (RCS), which is a modified version of the method defined by Seibert et al. (2000) and Sicard et al. (2006). The analysis is focused on selected case studies collected by the Raman lidar system BASIL during the Convective and Orographically-induced Precipitation Study (COPS), held in Southern Germany and Eastern France in the period 01 June - 31 August 2007. Measurements were performed by the Raman lidar system BASIL, which was operational in Achern (Black Forest, Lat: 48.64 ° N, Long: 8.06 ° E, Elev.: 140 m). During COPS, BASIL collected more than 500 hours of measurements, distributed over 58 measurement days and 34 intensive observation periods (IOPs), covering both night-time and daytime and the transitions between the two. Therefore BASIL data during COPS represent a unique source of information for the study of the boundary layer structure and evolution. Potential temperature profiles obtained from the radiosonde data were used to get an additional estimate of the boundary layer height. Estimates of the PBL height and structure for specific case studies obtained from the lidar data and their comparison with estimates obtained from the radiosonde data will be illustrated and discussed at the Conference.
    04/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A Drilling system, coupled with an in situ analysis package, is installed on the ExoMars Pasteur Rover to perform in situ investigations up to 2m in the Mars soil. Ma_Miss (Mars Multispectral Imager for Subsurface Studies) is a spectrometer devoted to observe the lateral wall of the borehole generated by the Drilling system. The instrument is fully integrated with the Drill and shares its structure and electronics. For the first time in Mars exploration experiments the water/geochemical environment will be investigated as function of depth in the shallow subsurface. Samples from the subsurface of Martian soil are unaltered by weathering process, oxidation and erosion. Subsurface access can be the key to look for signs of present and past environmental conditions, associated to the possibility for life (water, volatiles and weathering process). The analysis of uncontaminated samples by means of instrumented Drill and in situ observations is the solution for unambiguous interpretation of the original environment that leading to the formation of rocks. Ma_Miss experiment is perfectly suited to perform multispectral imaging of the drilled layers. Ma_Miss is a miniaturized near-infrared imaging spectrometer in the range 0.4-2.2 µm with 20nm spectral sampling. The task of illuminating the borehole wall and collecting the diffused light from the illuminated spot on the target requires a transparent window on the Drill tool, which shall prevent the dust contamination of the optical and mechanical elements inside. Hardness of sapphire is the closest to diamond one, thus avoiding the risk of scratches on its surface. The Sapphire window is cylindrical, and bounded such as to realize a continuous auger profile. Ma_Miss Optical Head performs the double task of illuminating the borehole wall with a spot around 1 mm diameter and of collecting the scattered light coming from a 0.1 mm diameter spot of the target. The signal from the Optical Head to the spectrometer is transferred through the different elements of the Drill by means of fiber optics and an optical rotary joint implemented in the roto-translation group of the Drill. Ma_Miss Optical Head has been tested in the breadboard to capture the diffused light from the observed target and transfer the signal to a laboratory spectrometer for analysis. The Optical Head of Ma_Miss has been tested after integration in ExoMars Drill. The drilling experiment has been carried out in realistic media (tuff, red brick). The test shows good performance of Optical Head illumination capability and of the window cleanliness during the drilling. Illumination spot is focused at the nominal distance of 0.2 mm from the sapphire window. During the ExoMars Pasteur Rover mission, the Ma_Miss experiment will allow collecting valuable data of the drilled stratigraphic column, will document "in-situ" the nature of the samples that will be delivered to the Pasteur Laboratory and will be able to identify hydrated minerals, sedimentary materials and different kind of diagnostic materials of Martian subsurface.
    04/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ma_Miss (Mars Multispectral Imager for Subsurface Studies) is a spectrometer devoted to observe the lateral wall of the borehole generated by the drill installed on the ExoMars Pasteur Rover to perform in situ investigations in the Mars subsurface.
    03/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: 4 Vesta is one of the largest and the most massive asteroid in the Main Asteroid Belt. This asteroid possesses a basaltic surface and apparently formed and differentiated very early in the history of the solar system. There are strong evidences that indicate Vesta as the parent body of Howardites, Diogenites and Eucrites (HEDs). HED meteorites are a subgroup of achondrite meteorites and they are a suite of rocks that formed at high temperature and experienced igneous processing similar to the magmatic rocks found on Earth. The visible and near-infrared (VNIR) reflectance spectra of Vesta's surface show high similarity with the laboratory spectra of HED meteorites. Vesta and HEDs spectra have two crystal field absorption bands close to 0.9 μm and 1.9 μm indicative of the presence of ferrous iron in pyroxenes. The HEDs differ from each other primarily based on variation in pyroxene composition and the pyroxene-plagioclase ratio as well as rocks texture characteristics (e.g., size of crystals). These differences suggest that a combined VNIR spectra studies of Vesta and HED meteorites might reveal the different characteristics of the surface compositions and shed new light on the origin and the thermal history of Vesta. Moreover the link between Vesta and HEDs could provide a test bed to understand the short-lived radionuclide-driven differentiation of planetary bodies. Here we present preliminary result of a study of spectral characteristics of different HED samples, provided to us by the Vatican Observatory. Bidirectional reflectance spectra of slabs of meteorites are performed in the VNIR, between (0.35/2.50) μm, using a Fieldspec spectrometer mounted on a goniometer, in use at the SLAB (Spectroscopy laboratory, INAF, Rome). The spectra are acquired in standard conditions with an incidence angle i=30o and an emission angle e=0o, measuring a spot with a diameter of 5 mm. Different Howardite, Diogenite and Eucrite samples are "mapped" considering several spots on the surface of the slabs to define their spectral variability between samples representing the different types of HEDs and to describe the spectral heterogeneity for each samples. A preliminary comparison with mineralogical and petrographic characteristics has been done describing hand samples and their thin sections. These data will be incorporated in a spectral library that could be an useful tool for the interpretation of data acquired by the Dawn mission in orbit on Vesta.
    AGU Fall Meeting Abstracts. 12/2011;
  • [Show abstract] [Hide abstract]
    ABSTRACT: During the Convective and Orographically-induced Precipitation Study (COPS), lidar dark and bright bands were observed by the University of BASILicata Raman lidar system (BASIL) during several intensive (IOPs) and special (SOPs) observation periods (among others, 23 July, 15 August, and 17 August 2007). Lidar data were supported by measurements from the University of Hamburg cloud radar MIRA 36 (36 GHz), the University of Hamburg dual-polarization micro rain radars (24.1 GHz) and the University of Manchester UHF wind profiler (1.29 GHz). Results from BASIL and the radars for 23 July 2007 are illustrated and discussed to support the comprehension of the microphysical and scattering processes responsible for the appearance of the lidar and radar dark and bright bands. Simulations of the lidar dark and bright band based on the application of concentric/eccentric sphere Lorentz-Mie codes and a melting layer model are also provided. Lidar and radar measurements and model results are also compared with measurements from a disdrometer on ground and a two-dimensional cloud (2DC) probe on-board the ATR42 SAFIRE.
    Atmospheric Chemistry and Physics 11/2011; 11(11):30949-30987. · 4.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study of the Martian subsurface will provide important constraints on the nature, timing and duration of alteration and sedimentation processes on Mars, as well as on the complex interactions between the surface and the atmosphere. A Drilling system, coupled with an in situ analysis package, is installed on the Exomars-Pasteur Rover to perform in situ investigations up to 2m in the Mars soil. Ma_Miss (Mars Multispectral Imager for Subsurface Studies) is a spectrometer devoted to observe the lateral wall of the borehole generated by the Drilling system. The instrument is fully integrated with the Drill and shares its structure and electronics.
    10/2011;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The SPectral IMaging (SPIM) facility is a laboratory set-up that has been developed to support remote sensing observations of Solar System bodies. In particular, the SPIM facility will be extensively used to support the DAWN mission[1], now approaching Vesta. The core of SPIM is a spectrometer that is a replica of the Visible InfraRed imaging spectrometer (VIR) [2], onboard the DAWN spacecraft. The SPIM spectrometer has been assembled and calibrated at Selex Galileo (SG) and then installed in the facility in the INAF-IFSI laboratory in Rome. SPIM has two goals: collect data to prepare a data-base of reflectance spectra for the interpretation of the space borne measurements; functional tests to simulate VIR operative conditions during the mission.
    10/2011;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An intensive water vapour intercomparison effort, involving airborne and ground-based water vapour lidar systems, was carried out in the framework of the COPS experiment. The main objective of this paper is to provide accurate error estimates for these systems.Comparisons between the ground-based Raman lidar BASIL and the airborne CNRS DIAL (Differential Absorption Lidar) indicate a mean relative bias between the two sensors, calculated with respect to the mean value of −2.13% (−0.034 g kg−1) in the altitude region 0.5–3.5 km, while comparisons between BASIL and the airborne DLR DIAL lead to a mean relative bias of 1.87% (0.018 g kg−1) in this same altitude region.Comparisons between the ground-based UHOH DIAL and the CNRS DIAL indicate a bias of −3.2% (−0.37 × 1022 m−3) in the altitude range 1.5–4.5 km, while comparisons between the UHOH DIAL and the DLR DIAL indicate a bias of 0.83% (0.06 × 1022 m−3) in this same altitude range. Based on the available comparisons between the ground-based Raman lidar BERTHA and the CNRS DIAL, the mean relative bias is found to be −4.37% (−0.123 g kg−1) in the altitude region 0.5–4.5 km. Comparisons between the ground-based IGN Raman lidar and the CNRS DIAL indicate a bias of 3.18% (0.55 g kg−1) in the altitude range from 0.5 to 4.5 km, while comparisons between the CNRS DIAL and DLR DIAL result in a mean relative bias of 3.93% (1.1 × 1022 m−3) in the altitude interval 0.5–4.0 km. Based on the available statistics of comparisons, benefiting from the fact that the CNRS DIAL was able to be compared with all other lidar systems, and putting equal weight on the data reliability of each instrument, overall relative values for BASIL, BERTHA, IGN Raman lidar, UHOH DIAL, DLR DIAL, and CNRS DIAL, with respect to the mean value, are found to be −0.38, −2.60, 4.90, −1.43, −2.23 and 1.72%, respectively. Copyright © 2011 Royal Meteorological Society
    Quarterly Journal of the Royal Meteorological Society 01/2011; 137(S1):325 - 348. · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Radiation Explorer in the Far InfraRed-Prototype for Applications and Development (REFIR-PAD) spectroradiometer was operated from the Testa Grigia Italian-Alps station in March 2007 during the Earth Cooling by Water Vapour Radiation (ECOWAR) measurement campaign, obtaining downwelling radiance spectra in the 100-1100 cm-1 range, under clear-sky conditions and in the presence of cirrus clouds. The analysis of these measurements has proven that the instrument is capable of determining precipitable water vapor with a total uncertainty of 5-7% by using the far-infrared rotational band of water. The measurement is unaffected by the presence of cirri, whose optical depth can be instead retrieved as an additional parameter. Information on the vertical profiles of water vapor volume mixing ratio and temperature can also be retrieved for three altitude levels. The ability to measure the water vapor column with a simple, uncooled instrument, capable of operating continuously and with a time resolution of about 10 min, makes REFIR-PAD a very valuable instrument for meteorological and climatological studies for the characterization of the water vapor distribution.
    Journal of Geophysical Research 01/2011; 116(D2):2310-. · 3.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A desert dust episode in June 2007 and its radiative effects on the energy budget have been studied at three Italian stations (Rome, Lecce and Lampedusa) with the aim of investigating the interactions with different conditions and aerosol types over the Mediterranean. The three sites are representative for urban (Rome), sub-urban/rural (Lecce), and marine (Lampedusa) environment, respectively in the central Mediterranean region. Measured ground-based column-averaged aerosol optical properties and aerosol extinction profiles were used to initialize the MODTRAN4 radiative transfer model. The radiative transfer model was used to estimate the shortwave aerosol radiative forcing (ARF) and its forcing efficiency (FE) at two different solar zenith angles (20° and 60°) in the 280–2800 nm spectral range.The goal was to investigate the role of different aerosol types in the atmospheric boundary layer on the radiative budget during a dust event. During the event the aerosol optical depth was moderately high and similar at the three stations, with a maximum value of about 0.6. The Ångström exponent was found to increase with the distance from the source (0.21, 0.36, and 0.43 at Lampedusa, Rome, and Lecce, respectively). Differences in the aerosol optical properties were observed, also depending on the aerosol type assumed in the boundary layer. The estimated direct aerosol forcing appears to depend on the changes in aerosol properties and to the surface albedo. The results show that the desert dust produces a cooling effect at both surface (largest ARF of −224 W m−2 at 20° solar zenith angle at Rome) and top of the atmosphere (largest ARF of −19 W m−2 at 20° solar zenith angle at Lecce). The cooling is largest in the rural and smallest in the marine environment. The surface forcing efficiency appears to be strongly affected by the aerosol absorption in the BL. Large differences exist between our results and the FE determinations by AERONET, derived considering a single layer with homogeneous optical properties and prescribed vertical distribution. The FE deviations are around 20, 60, and 40% at the surface, TOA, and in the atmosphere, respectively. These results suggest that the detailed description of the vertical distribution of the aerosol properties is needed for an accurate determination of its radiative effects.Highlights► We describe an intense Saharan Dust event in the Central Mediterranean. ► We combine ground-based aerosol measurements and radiative transfer modelling. ► We study the desert dust optical properties and its radiative forcing. ► We investigate the dust interactions with different boundary layer aerosol and surface conditions over the Mediterranean. ► We introduce the vertical distribution of the aerosol optical properties in the radiative transfer simulations.
    Atmospheric Environment 01/2011; 45(30):5385-5393. · 3.11 Impact Factor