Xiaojuan Zhang

Chinese Academy of Sciences, Peping, Beijing, China

Are you Xiaojuan Zhang?

Claim your profile

Publications (9)36.44 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The spindle assembly checkpoint kinase Mps1 is highly expressed in several types of cancers, but its cellular involvement in tumorigenesis is less defined. Herein, we confirm that Mps1 is overexpressed in colon cancer tissues. Further, we find that forced expression of Mps1 in the colon cancer cell line SW480 enables cells to become resistant to both Mps1 inhibition-induced checkpoint depletion and cell death. Overexpression of Mps1 also increases genome instability in tumor cells owing to a weakened spindle assembly checkpoint. Collectively, our findings suggest that high levels of Mps1 contribute to tumorigenesis by attenuating the spindle assembly checkpoint.
    Biochemical and Biophysical Research Communications 07/2014; · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effect of UV irradiation on replicating cells during interphase has been studied extensively. However, how the mitotic cell responds to UV irradiation is less well defined. Herein, we found that UV-C irradiation (254 nm) increases recruitment of the spindle checkpoint proteins Mps1 and Mad2 to the kinetochore during metaphase, suggesting that the spindle assembly checkpoint (SAC) is reactivated. In accordance with this, cells exposed to UV-C showed delayed mitotic progression, characterized by a prolonged chromosomal alignment during metaphase. UV-C irradiation also induced the DNA damage response and caused a significant accumulation of γ-H2AX on mitotic chromosomes. Unexpectedly, the mitotic delay upon UV-C irradiation is not due to the DNA damage response but to the relocation of Mps1 to the kinetochore. Further, we found that UV-C irradiation activates Aurora B kinase. Importantly, the kinase activity of Aurora B is indispensable for full recruitment of Mps1 to the kinetochore during both prometaphase and metaphase. Taking these findings together, we propose that UV irradiation delays mitotic progression by evoking the Aurora B-Mps1 signaling cascade, which exerts its role through promoting the association of Mps1 with the kinetochore in metaphase.
    Cell cycle (Georgetown, Tex.) 03/2013; 12(8). · 5.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spindle assembly checkpoint kinase Mps1 is spatially and temporally regulated during cell cycle progression. Mps1 is predominately localized to the cytosol in interphase cells, whereas it is concentrated on kinetochores in prophase and prometaphase cells. The timing and mechanism of Mps1 redistribution during cell cycle transition is currently poorly understood. Here, we show that Mps1 relocates from the cytosol to the nucleus at the G 2/M boundary prior to nuclear envelope breakdown (NEB). This timely translocation depends on two tandem LXXLL motifs in the N terminus of Mps1, and mutations in either motif abolish Mps1 nuclear accumulation. Furthermore, we found that phosphorylation of Mps1 Ser80 (which is located between the two LXXLL motifs) also plays a role in regulating timely nuclear entry of Mps1. Mps1 that is defective in LXXLL motifs has near wild-type kinase activity. Moreover, the kinase activity of Mps1 appears to be dispensable for nuclear translocation, as inhibition of Mps1 by a highly specific small-molecule inhibitor did not perturb its nuclear entry. Remarkably, translocation-deficient Mps1 can mediate activation of spindle assembly checkpoint response; however, it fails to support a sustained mitotic arrest upon prolonged treatment with nocodazole. The mitotic slippage can be attributed to precocious degradation of Mps1 in the arrested cells. Our studies reveal a novel cell cycle-dependent nuclear translocation signal in the N terminus of Mps1 and suggest that timely nuclear entry could be important for sustaining spindle assembly checkpoint responses.
    Cell cycle (Georgetown, Tex.) 08/2011; 10(16):2742-50. · 5.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mps1 is a protein kinase that regulates normal mitotic progression and the spindle checkpoint in response to spindle damage. The levels of Mps1 are relatively low in cells during interphase but elevated in mitosis or upon activation of the spindle checkpoint, although the dynamic range of Mps1 expression and the Mps1 catalytic mechanism have not been carefully characterized. Our recent structural studies of the Mps1 kinase domain revealed that the carboxyl-terminal tail region of Mps1 is unstructured, raising the question of whether this region has any functional role in Mps1 catalysis. Here we first determined the cellular abundance of Mps1 during cell cycle progression and found that Mps1 levels vary between 60,000 per cell in early G1 and 110,000 per cell during mitosis. We studied phosphorylation of a number of Mps1 substrates in vitro and in culture cells. Unexpectedly, we found that the unstructured carboxyl-terminal region of Mps1 plays an essential role in substrate recruitment. Kinetics studies using the purified recombinant wild type and mutant kinases indicate that the carboxyl-terminal tail is largely dispensable for autophosphorylation of Mps1 but critical for trans-phosphorylation of substrates in vitro and in cultured cells. Mps1 mutant without the unstructured tail region is defective in mediating spindle assembly checkpoint activation. Our results underscore the importance of the unstructured tail region of Mps1 in kinase activation.
    Journal of Biological Chemistry 12/2010; 285(49):38730-38739. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mps1 is a protein kinase that regulates normal mitotic progression and the spindle checkpoint in response to spindle damage. The levels of Mps1 are relatively low in cells during interphase but elevated in mitosis or upon activation of the spindle checkpoint, although the dynamic range of Mps1 expression and the Mps1 catalytic mechanism have not been carefully characterized. Our recent structural studies of the Mps1 kinase domain revealed that the carboxyl-terminal tail region of Mps1 is unstructured, raising the question of whether this region has any functional role in Mps1 catalysis. Here we first determined the cellular abundance of Mps1 during cell cycle progression and found that Mps1 levels vary between 60,000 per cell in early G(1) and 110,000 per cell during mitosis. We studied phosphorylation of a number of Mps1 substrates in vitro and in culture cells. Unexpectedly, we found that the unstructured carboxyl-terminal region of Mps1 plays an essential role in substrate recruitment. Kinetics studies using the purified recombinant wild type and mutant kinases indicate that the carboxyl-terminal tail is largely dispensable for autophosphorylation of Mps1 but critical for trans-phosphorylation of substrates in vitro and in cultured cells. Mps1 mutant without the unstructured tail region is defective in mediating spindle assembly checkpoint activation. Our results underscore the importance of the unstructured tail region of Mps1 in kinase activation.
    Journal of Biological Chemistry 09/2010; 285(49):38730-9. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monoclonal antibodies have been employed as targeting molecules of superantigen for the preclinical treatment of a variety of tumours. However, other targeting molecules, such as tumour-related ligands or peptides, are less exploited. Here, we tested other targeting molecules by genetically fusing the third loop of transforming growth factor alpha (TGFalphaL3) to mutant staphylococcal enterotoxin A (SEAD227A). The resultant fusion proteins were expressed in E. coli and purified to homogeneity through a Ni-NTA affinity column. Fusion protein TGFalphaL3SEAD227A can promote splenocyte proliferation to a level comparable to recombinant SEA (rSEA) and bind to EGFR-expressing tumour cells in an EGFR-dependent way. Consistent with these observations, TGFalphaL3SEAD227A exerted an inhibitory effect on the growth of EGFR-expressing tumour cells both in vitro and in vivo. Notably, significant infiltrations of CD8+ and CD4+ T cells were detected in the tumour tissues of these C57BL/6 mice treated with TGFalphaL3SEAD227A, suggesting the involvement of T cells in this tumour-inhibitory process. The data here showed that TGFαL3 is capable of targeting superantigen to tumours and exerting an inhibitory effect on tumour growth, which enables TGFαL3SEAD227A to be an attractive candidate for the immunotherapy of EGFR-expressing tumours.
    BMC Biotechnology 01/2010; 10:91. · 2.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In a search for genes involved in regulation of uterine contractility, we cloned a novel calcium-activated chloride channel gene, named rat Clca4, from pregnant rat uterus. The gene shares approximately 83% and 70% nucleotide homology with mouse Clca6 and human CLCA4, respectively, and was expressed primarily in rat uterus. The transcripts were upregulated at Gestational Day 22 (prior to parturition), implying a functional involvement in parturition. Western blot analysis showed that rat CLCA4 protein was present in uterus, lung, and heart, but not in any other tissues examined. Confocal microscopy revealed that rat CLCA4 is localized in cell membrane and could not be removed by alkaline or PBS washing. Transient transfection of rat CLCA4-enhanced green fluorescent protein in Chinese hamster ovary cells resulted in production of characteristic Cl(-) currents that could be activated by Ca(2+) and ionomycin but inhibited by niflumic acid, a CLCA-channel blocker. The identification and characterization of rat Clca4 help decipher the contribution of Ca(2+)-activated Cl(-) conductance in myometrial contractility.
    Biology of Reproduction 02/2009; 80(4):788-94. · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mps1 is a protein kinase that plays essential roles in spindle checkpoint signaling. Unattached kinetochores or lack of tension triggers recruitment of several key spindle checkpoint proteins to the kinetochore, which delays anaphase onset until proper attachment or tension is reestablished. Mps1 acts upstream in the spindle checkpoint signaling cascade, and kinetochore targeting of Mps1 is required for subsequent recruitment of Mad1 and Mad2 to the kinetochore. The mechanisms that govern recruitment of Mps1 or other checkpoint proteins to the kinetochore upon spindle checkpoint activation are incompletely understood. Here, we demonstrate that phosphorylation of Mps1 at T12 and S15 is required for Mps1 recruitment to the kinetochore. Mps1 kinetochore recruitment requires its kinase activity and autophosphorylation at T12 and S15. Mutation of T12 and S15 severely impairs its kinetochore association and markedly reduces recruitment of Mad2 to the kinetochore. Our studies underscore the importance of Mps1 autophosphorylation in kinetochore targeting and spindle checkpoint signaling.
    Molecular biology of the cell 11/2008; 20(1):10-20. · 5.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chinese Kun Ming (KM) mouse, an outbreed strain of laboratory animal, has been widely utilized in related pharmaceutical and genetic studies throughout China. However, the value of KM mice to the research community has been severely limited, partially due to the fact that well-characterized inbred strain of KM mice is not available. Several expected inbred strains from KM mice have been bred, but their genetic purity remains uncertain. In this study, four expected inbred strains of KM mice (A1, T2, N2, and N4) were chosen and their inbred degree were compared with two classical inbred mouse lines (BALB/c and C57BL/6) by analyzing the genotypes of about 30 microsatellite markers. In the four strains, A1 and N4 were homozygous at all genotyped loci, but N2 and T2 were only heterozygous at locus D15Mit16. These results indicate that the level of genetic purity/homozygousity of A1, N4, N2, and T2 inbred line is comparable to those of BALB/c and C57BL/6. This study provided the first and solid evidence for genetic purity of four expected inbred strains of KM mice. These 4 inbred mice strains should be well maintained for further characterization and utilization in genetic studies.
    Journal of Genetics and Genomics 04/2007; 34(3):214-22. · 2.08 Impact Factor

Publication Stats

40 Citations
36.44 Total Impact Points

Institutions

  • 2014
    • Chinese Academy of Sciences
      • Center for Developmental Biology
      Peping, Beijing, China
  • 2007–2013
    • Northeast Institute of Geography and Agroecology
      • • Center for Developmental Biology
      • • Institute of Genetics and Developmental Biology
      Beijing, Beijing Shi, China
  • 2008–2011
    • University of Colorado at Boulder
      • Department of Chemistry and Biochemistry
      Boulder, Colorado, United States
    • Fudan University
      Shanghai, Shanghai Shi, China