Amit Kale

Northeastern University, Boston, MA, United States

Are you Amit Kale?

Claim your profile

Publications (14)42.36 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Raman spectroscopy in combination with optical microscopy provides a new non-invasive method to examine and image cellular processes. Based on the spectral parameters of a cell’s components it is possible to image cellular organelles, such as the nucleus, chromatin, mitochondria, or lipid bodies, at the resolution of conventional microscopy. Several multivariate or spectral de-mixing algorithms, for example, hierarchical cluster analysis or orthogonal subspace projection, may be used to reconstruct an image of a cell. The non-invasive character of the technique as well as the associated chemical information may offer advantages over other imaging techniques such as fluorescence microscopy. Currently of particular interest are the uptake and intracellular fate of various pharmaceutical nanocarriers, which are widely used for drug delivery purposes, including intracellular drug and gene delivery. We have imaged the uptake and distribution patterns of several carrier systems over time. In order to distinguish the species of interest from their cellular environment spectroscopically, the carrier particles or the drug load itself may be labeled with deuterium. The first part of the chapter will briefly introduce the concept of Raman imaging in combination with multivariate data analysis on some simple cell models, after which the results of the uptake studies are discussed.
    01/2011: pages 137-163;
  • Source
    Amit A Kale, Vladimir P Torchilin
    [Show abstract] [Hide abstract]
    ABSTRACT: Liposomal nanocarriers anchored with a cell-penetrating peptide and a pH-sensitive PEG-shield where later has ability to provide simultaneously better systemic circulation and site-specific exposure of cell penetrating peptide. PEG chains were incorporated into the liposome membrane via the PEG-attached phosphatidylethanolamine (PE) residue with PEG and PE being conjugated with the lowered pH-degradable hydrazone bond (PEG-HZ-PE), while cell-penetrating peptide (TATp) was added as TATp-PEG-PE conjugate. Under normal conditions, liposome-grafted PEG "shielded" liposome-attached TATp moieties, since the PEG spacer for TATp attachment (PEG(1000)) was shorter than protective PEG(2000). PEGylated liposomes accumulate in targets via the EPR effect, but inside the "acidified" tumor or ischemic tissues lose their PEG coating because of the lowered pH-induced hydrolysis of HZ and penetrate inside cells via the now-exposed TATp moieties. pH-responsive behavior of these constructs is successfully tested in cell cultures in vitro as well as in tumors in experimental mice in vivo. These nanocarriers also showed enhanced pGFP transfection efficiency upon intratumoral administration in mice, compared to control pH nonsensitive counterpart. These results can be considered as an important step in the development of tumor-specific stimuli-sensitive drug and gene delivery systems.
    Methods in molecular biology (Clifton, N.J.) 01/2010; 605:213-42. · 1.29 Impact Factor
  • Source
    A A Kale, V P Torchilin
    [Show abstract] [Hide abstract]
    ABSTRACT: Polyethylene glycol derivatives, such as block copolymers of polyethylene glycol and diacyllipids (for example, phosphatidylethanolamine) are widely used for surface modification of various pharmaceutical carriers in order to impart them longevity in the body. To make polyethylene glycol detachable from the surface of pharmaceutical carrier and facilitate the interaction of the carrier with target cells when in pathological zone, we have prepared a set of polyethylene glycol-phosphatidylethanolamine block copolymers with the pH sensitive hydrazone bond between polyethylene glycol and phosphatidylethanolamine, which destabilizes at lowered pH values typical for tumors and inflammation zones. We have demonstrated that the stability of the hydrazone bond at normal physiological pH (7.4) as well as the rate of its hydrolysis at pH 6 and below strongly depend on the type of substitutions at this bond. Using aliphatic and aromatic aldehydes and ketones, polyethylene glycol-phosphatidylethanolamine block copolymers were prepared with different stabilities and degradation rates, which can be useful in constructing stimuli-sensitive pharmaceutical carriers.
    Polymer Science Series A 06/2009; 51(6):730-737. · 0.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel highly biocompatible near infrared nanosized contrast agent was developed and used for rapid tumor detection and quantification using planar optical imaging and analysis. With this in mind, the near infrared fluorescent dye Alexa 750 was covalently attached to polyethylene glycol-phosphatidylethanolamine (PEG-PE) conjugate, and double labeled (with Alexa and rhodamine) PEG-PE micelles were injected into mice and observed using planar optical imaging. Pixel intensity data from the tumor site were normalized versus the autofluorescence of the animal at the same time point and normalized as signal to noise over the scattered light from the various tissues of the mice. The detected signal from the tumor was higher than the background noise allowing for rapid detection of the tumor. The tumor was clearly visible within one hour. Some signal was also detected from the abdomen of the mice. As determined by microscopy analysis, other organs of accumulation were the liver and kidney, which corresponded well to the data from the whole body imaging animal studies.
    International Journal of Nanomedicine 02/2009; 4:123-31. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With few exceptions, where local administration is feasible, progress towards broad clinical application of gene therapies requires the development of effective delivery systems. Here we report a novel non-viral gene delivery vector, 'micelle-like nanoparticle' (MNP) suitable for systemic application. MNP were engineered by condensing plasmid DNA with a chemical conjugate of phospholipid with polyethylenimine (PLPEI) and then coating the complexes with an envelope of lipid monolayer additionally containing polyethylene glycol-phosphatidyl ethanolamine (PEG-PE), resulting in spherical 'hard-core' nanoparticles loaded with DNA. MNP allowed for complete protection of the loaded DNA from enzymatic degradation, resistance to salt-induced aggregation, and reduced cytotoxicity. MNP also demonstrated prolonged blood circulation and low RES accumulation. Intravenous injection of MNP loaded with plasmid DNA encoding for the Green Fluorescence Protein (GFP) resulted in an effective transfection of a distal tumor. Thus, MNP provide a promising tool for systemic gene therapy.
    Journal of Controlled Release 11/2008; 133(2):132-8. · 7.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Surface architecture of pharmaceutical nanocarriers (using polymeric micelles as an example) and the length of the spacer group through which specific ligand is attached to the carrier surface determine the interaction of ligand-bearing nanocarrier with cells. We have prepared surface-modified polyethyleneglycol-phosphatidylethanolamine (PEG-PE) micelles containing TATp attached to PEG-PE with a PEG block longer or shorter (TATp-PEG(1000)-PE or TATp-PEG(3400)-PE) than the PEG block in the main micelle-forming material (PEG(750)-PE and/or PEG(2000)-PE). The length of the PEG spacer in TATp-PEG-PE should allow for a non-hindered interaction of TATp with the cell surface, but it should not be too long to allow for the conformational "folding in" of TATp moiety inside the PEG globule making it unable to interact with the cells. The "folding in" of the ligand attached to an unnecessary long PEG spacer was further supported by the fluorescence resonance energy transfer (FRET) study between fluorescently labeled lipid 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (NBD-PE) inserted into the core of PEG(750)-PE micelles and micelle-incorporated rhodamine-labeled TATp-PEG-PE. Micelles containing rhodamine-labeled TATp-PEG-PE with the longest PEG spacer (3400 Da) demonstrated strongly enhanced quenching of NBD-PE fluorescence with rhodamine-TATp confirming the "folding in" of TATp moiety into PEG globule bringing it closer to the micelle core-incorporated NBD.
    Journal of Drug Targeting 09/2008; 16(7):596-600. · 2.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The treatment of myocardial ischemia using gene therapy is a rather novel but promising approach. Gene delivery to target cells may be enhanced by using double-targeted delivery systems simultaneously capable of extracellular accumulation and intracellular penetration. With this in mind, we have used low cationic liposomes-plasmid DNA complexes (lipoplexes) modified with cell-penetrating transactivating transcriptional activator (TAT) peptide (TATp) and/or with monoclonal anti-myosin monoclonal antibody 2G4 (mAb 2G4) specific toward cardiac myosin, for targeted gene delivery to ischemic myocardium. In vitro transfection of both normoxic and hypoxic cardiomyocytes was enhanced by the presence of TATp as determined by fluorescence microscopy and ELISA. The in vitro transfection was further enhanced by the additional modification with mAb 2G4 antibody in the case of hypoxic, but not normoxic cardiomyocytes. However, we did not observe a synergism between TATp and mAb 2G4 ligands under our experimental condition. In in vivo experiments, we have clearly demonstrated an increased accumulation of mAb 2G4-modified TATp lipoplexes in the ischemic rat myocardium and significantly enhanced transfection of cardiomyocytes in the ischemic zone. Thus, the genetic transformation of normoxic and hypoxic cardiomyocytes can be enhanced by using lipoplexes modified with TATp and/or mAb 2G4. Such complexes also demonstrate an increased accumulation in the ischemic myocardium and effective transfection of hypoxic cardiomyocytes in vivo.
    Gene therapy 09/2008; 16(1):52-9. · 4.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Efficient syntheses of a series of functionalized aryl enediynes have been developed. The building blocks were used to effect conjugation to carrier PEG templates which allowed subsequent coupling to a cardiac targeted monoclonal antibody. Immunocompetence of the enediyne-Mab conjugates was demonstrated by ELISA, and both parent enediynes and bioconjugates underwent successful photo-Bergman cyclization. Finally, surface modified (Au) nanoparticle conjugates were prepared and size confirmed by TEM analysis. Application as long-circulating photoactivated prodrugs is anticipated.
    Bioorganic & medicinal chemistry letters 03/2008; 18(3):934-7. · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent developments, combining Raman spectroscopy with optical microscopy, provide a new noninvasive technique to assess and image cellular processes. Of particular interest are the uptake mechanisms of various cytologically active compounds. In order to distinguish the species of interest from their cellular environment spectroscopically, compounds may be labeled with deuterium. Here, we apply Raman microspectroscopy to follow the uptake of liposomal drug carrier systems that have been introduced to deliver biologically active compounds to their site of action within human breast adenocarcinoma MCF-7 cells. The distribution patterns of liposomes and liposomes surface-modified with a cell-penetrating peptide (TAT-peptide, TATp) have been imaged over time. The spectroscopic information obtained provides a clear evidence for variable rates, as well as different efficiencies of liposome uptake depending on their surface properties. Depending on the experimental setup, the technique may be applied to fixed or living cell organisms.
    Molecular Pharmaceutics 01/2008; 5(2):287-93. · 4.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Raman spectroscopy, in combination with optical microscopy provides a new non-invasive method to asses and image cellular processes. Based on the spectral signatures of a cell's components, it is possible to image cellular organelles such as the nucleus, chromatin, mitochondria or lipid bodies, at the resolution of conventional microscopy. Several multivariate algorithms, for example hierarchical cluster analysis or orthogonal subspace projection, may be used to reconstruct an image of a cell. The noninvasive character of the technique, as well as the associated chemical information, may offer advantages over other imaging techniques such as fluorescence microscopy. Currently of particular interest are uptake and intracellular fate of various pharmaceutical nanocarriers, which are widely used for drug delivery purposes, including intracellular drug and gene delivery. We have imaged the uptake and distribution patterns of several carrier systems over time. In order to distinguish the species of interest from their cellular environment spectroscopically, the carrier particles or the drug load itself may be labeled with deuterium. Here, we introduce the concept of Raman imaging in combination with vertex component data analysis to follow the uptake of nanocarriers based on phospholipids as well as biodegradable polymers.
    Proc SPIE 01/2008;
  • Source
    Amit A Kale, Vladimir P Torchilin
    [Show abstract] [Hide abstract]
    ABSTRACT: To engineer drug carriers capable of spontaneous accumulation in tumors and ischemic areas via the enhanced permeability and retention (EPR) effect and further penetration and drug delivery inside tumor or ischemic cells via the action of the cell-penetrating peptide (CPP), we have prepared liposomes simultaneously bearing on their surface CPP (TAT peptide, TATp) moieties and protective PEG chains. PEG chains were incorporated into the liposome membrane via the PEG-attached phosphatidylethanolamine (PE) residue with PEG and PE being conjugated with the lowered pH-degradable hydrazone bond (PEG-HZ-PE). Under normal conditions, liposome-grafted PEG "shielded" liposome-attached TATp moieties since the PEG spacer for TATp attachment (PEG(1000)) was shorter than protective PEG(2000). PEGylated liposomes are expected to accumulate in targets via the EPR effect, but inside the "acidified" tumor or ischemic tissues lose their PEG coating due to the lowered pH-induced hydrolysis of HZ and penetrate inside cells via the now-exposed TATp moieties. This concept is shown here to work in cell cultures in vitro as well as in ischemic cardiac tissues in the Langendorff perfused rat heart model and in tumors in experimental mice in vivo.
    Journal of Liposome Research 02/2007; 17(3-4):197-203. · 1.91 Impact Factor
  • Source
    Amit A Kale, Vladimir P Torchilin
    [Show abstract] [Hide abstract]
    ABSTRACT: A set of aliphatic and aromatic aldehyde-derived hydrazone (HZ)-based acid-sensitive polyethylene glycol-phosphatidylethanolamine (PEG-PE) conjugates was synthesized and evaluated for their hydrolytic stability at neutral and slightly acidic pH values. The micelles formed by aliphatic aldehyde-based PEG-HZ-PE conjugates were found to be highly sensitive to mildly acidic pH and reasonably stable at physiologic pH, while those derived from aromatic aldehydes were highly stable at both pH values. The pH-sensitive PEG-PE conjugates with controlled pH sensitivity may find applications in biological stimuli-mediated drug targeting for building pharmaceutical nanocarriers capable of specific release of their cargo at certain pathological sites in the body (tumors, infarcts) or intracellular compartments (endosomes, cytoplasm) demonstrating decreased pH.
    Bioconjugate Chemistry 01/2007; 18(2):363-70. · 4.58 Impact Factor
  • Source
    Amit A Kale, Vladimir P Torchilin
    [Show abstract] [Hide abstract]
    ABSTRACT: Liposomes have been prepared loaded with DNA (plasmid encoding for the green fluorescent protein, GFP) and additionally modified with TATp and PEG, with PEG being attached to the liposome surface via both pH-sensitive hydrazone and non-pH-sensitive bonds. The pGFP-loaded liposomal preparations have been administered intratumorarly in tumor-bearing mice and the efficacy of tumor cell transfection was followed after 72 h. The administration of pGFP-TATp-liposomes with non-pH-sensitive PEG coating has resulted in only minimal transfection of tumor cells because of steric hindrances for the liposome-to-cell interaction created by the PEG coat, which shielded the surface-attached TATp. At the same time, the administration of pGFP-TATp-liposomes with the low pH-detachable PEG resulted in at least three times more efficient transfection since the removal of PEG under the action of the decreased intratumoral pH leads to the exposure of the liposome-attached TATp residues, enhanced penetration of the liposomes inside tumor cells and more effective intracellular delivery of the pGFP. This result can be considered as an important step in the development of tumor-specific stimuli-sensitive drug and gene delivery systems.
    Journal of Drug Targeting 01/2007; 15(7-8):538-45. · 2.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To develop targeted pharmaceutical carriers additionally capable of responding to certain local stimuli, such as decreased pH values in tumors or infarcts, targeted long-circulating PEGylated liposomes and PEG-phosphatidylethanolamine (PEG-PE)-based micelles have been prepared with several functions. First, they are capable of targeting a specific cell or organ by attaching the monoclonal antimyosin antibody 2G4 to their surface via pNP-PEG-PE moieties. Second, these liposomes and micelles were additionally modified with biotin or TAT peptide (TATp) moieties attached to the surface of the nanocarrier by using biotin-PE or TATp-PE or TATp-short PEG-PE derivatives. PEG-PE used for liposome surface modification or for micelle preparation was made degradable by inserting the pH-sensitive hydrazone bond between PEG and PE (PEG-Hz-PE). Under normal pH values, biotin and TATp functions on the surface of nanocarriers were "shielded" by long protecting PEG chains (pH-degradable PEG(2000)-PE or PEG(5000)-PE) or by even longer pNP-PEG-PE moieties used to attach antibodies to the nanocarrier (non-pH-degradable PEG(3400)-PE or PEG(5000)-PE). At pH 7.4-8.0, both liposomes and micelles demonstrated high specific binding with 2G4 antibody substrate, myosin, but very limited binding on an avidin column (biotin-containing nanocarriers) or internalization by NIH/3T3 or U-87 cells (TATp-containing nanocarriers). However, upon brief incubation (15-30 min) at lower pH values (pH 5.0-6.0), nanocarriers lost their protective PEG shell because of acidic hydrolysis of PEG-Hz-PE and acquired the ability to become strongly retained on an avidin column (biotin-containing nanocarriers) or effectively internalized by cells via TATp moieties (TATp-containing nanocarriers). We consider this result as the first step in the development of multifunctional stimuli-sensitive pharmaceutical nanocarriers.
    Bioconjugate Chemistry 01/2006; 17(4):943-9. · 4.58 Impact Factor