Bekim Sadikovic

Baylor College of Medicine, Houston, TX, United States

Are you Bekim Sadikovic?

Claim your profile

Publications (25)108.09 Total impact

  • 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malsegregation of chromosomes during reproduction can result in uniparental disomy when associated with trisomy rescue, monosomy rescue or gamete complementation. Pathogenicity stemming from uniparental disomy in liveborns results from imprinting disorders or autozygosity for autosomal recessive disorders. We report on a girl with Prader–Willi syndrome and Tay–Sachs disease resulting from maternal uniparental disomy of chromosome 15. The child also had an isochromosome Xq. To further characterize the etiology of the aberrant chromosome 15 and the isochromosome Xq, SNP loci from both chromosomes were assessed in the proband and parents, and genome-wide DNA methylation analysis was performed. SNP and DNA methylation analysis confirmed maternal uniparental heterodisomy around the Prader–Willi locus, while the region around the HEXA locus showed maternal uniparental isodisomy. This result is consistent with trisomy rescue of a maternal meiosis l error in a chromosome 15 with two meiotic recombinations. SNP analysis of the X chromosomes is consistent with a maternal origin for the isochromosome. © 2014 Wiley Periodicals, Inc.
    American Journal of Medical Genetics Part A 10/2014; · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Angelman syndrome is a neurodevelopmental disorder caused by a deficiency of the imprinted and maternally expressed UBE3A gene. Although de novo genetic and epigenetic imprinting defects of UBE3A genomic locus account for majority of Angelman diagnoses, approximately 10% of individuals affected with Angelman syndrome are a result of UBE3A loss-of-function mutations occurring on the expressed maternal chromosome. The variants described in this manuscript represent the analysis of 2515 patients referred for UBE3A gene sequencing at our institution, along with a comprehensive review of the UBE3A mutation literature. Of these, 267 (10.62%) patients had a report issued for detection of a UBE3A gene nucleotide variant, which in many cases involved family studies resulting in reclassification of variants of unknown clinical significance (VUS). Overall, 111 (4.41%) probands had a nucleotide change classified as pathogenic or strongly favored to be pathogenic, 29 (1.15%) had a variant of unknown clinical significance, and 126 (5.0%) had a nucleotide change classified as benign or strongly favored to be benign. All variants and their clinical interpretations are submitted to NCBI ClinVar, a freely accessible human variation and phenotype database.This article is protected by copyright. All rights reserved
    Human Mutation 09/2014; · 5.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A significant proportion (up to 62%) of Oral Squamous Cell Carcinomas (OSCCs) may arise from oral potential malignant lesions (OPML), such as leukoplakia. Patient outcomes may thus be improved through detection of lesions at risk for malignant transformation, by identifying and categorizing genetic changes in sequential, progressive OPMLs. We conducted array comparative genomic hybridization (aCGH) analysis of 25 sequential, progressive OPMLs and same-site OSCCs from five patients. Recurrent DNA copy number gains were identified on 1p in 20/25 cases (80%) with minimal, high-level amplification regions on 1p35 and 1p36. Other regions of gains were frequently observed: 11q13.4 (68%), 9q34.13 (64%), 21q22.3 (60%), 6p21 and 6q25 (56%), 10q24, 19q13.2, 22q12, 5q31.2, 7p13, 10q24, and 14q22 (48%). DNA losses were observed in >20% of samples and mainly detected on 5q31.2 (35%), 16p13.2 (30%), 9q33.1 and 9q33.29 (25%), and 17q11.2, 3p26.2, 18q21.1, 4q34.1 and 8p23.2 (20%). Such Copy Number Alterations (CNAs) were mapped in all grades of dysplasia that progressed, and their corresponding OSCCs, in 70% of patients, indicating that these CNAs may be associated with disease progression. Amplified genes mapping within recurrent CNAs (KHDRBS1, PARP1, RAB1A, HBEGF, PAIP2, BTBD7) were selected for validation, by quantitative real-time PCR, in an independent set of 32 progressive leukoplakia, 32 OSSCs and 21 non-progressive leukoplakia samples. Amplification of BTBD7, KHDRBS1, PARP1 and RAB1A was exclusively detected in progressive leukoplakia and corresponding OSCC. BTBD7, KHDRBS1, PARP1 and RAB1A may be associated with OSCC progression. Protein-protein interaction networks were created to identify possible pathways associated with OSCC progression.
    Human Molecular Genetics 01/2014; · 7.69 Impact Factor
  • Bekim Sadikovic
    Clinical Biochemistry. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maternal-effect mutations in NLRP7 cause rare biparentally inherited hydatidiform moles (BiHMs), abnormal pregnancies containing hypertrophic vesicular trophoblast but no embryo. BiHM trophoblasts display abnormal DNA methylation patterns affecting maternally methylated germline differentially methylated regions (gDMRs), suggesting that NLRP7 plays an important role in reprogramming imprinted gDMRs. How NLRP7-a component of the CATERPILLAR family of proteins involved in innate immunity and apoptosis-causes these specific DNA methylation and trophoblast defects is unknown. Because rodents lack NLRP7, we used human embryonic stem cells to study its function and demonstrate that NLRP7 interacts with YY1, an important chromatin-binding factor. Reduced NLRP7 levels alter DNA methylation and accelerate trophoblast lineage differentiation. NLRP7 thus appears to function in chromatin reprogramming and DNA methylation in the germline or early embryonic development, functions not previously associated with members of the NLRP family.
    Human Molecular Genetics 10/2013; · 7.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Osteosarcoma, the most frequent primary bone tumor, is a malignant mesenchymal sarcoma with a peak incidence in young children and adolescents. Left untreated, it progresses relentlessly to local and systemic disease, ultimately leading to death within months. Genomically, osteosarcomas are aneuploid with chaotic karyotypes, lacking the pathognomonic genetic rearrangements characteristic of most sarcomas. The familial genetics of osteosarcoma helped in elucidating some of the etiological molecular disruptions, such as the tumor suppressor genes RB1 in retinoblastoma and TP53 in Li-Fraumeni, and RECQL4 involved in DNA repair/replication in Rothmund-Thomson syndrome. Genomic profiling approaches such as array comparative genomic hybridization (aCGH) have provided additional insights concerning the mechanisms responsible for generating complex osteosarcoma genomes. This chapter provides a brief introduction to the clinical features of conventional osteosarcoma, the predominant subtypes, and a general overview of materials and analytical methods of osteosarcoma aCGH, followed by a more detailed literature overview of aCGH studies and a discussion of emerging genes, molecular mechanisms, and their clinical implications, as well as more recent application of integrative genomics in osteosarcoma. aCHG is helping elucidate genomic events leading to tumor development and evolution as well as identification of prognostic markers and therapeutic targets in osteosarcoma.
    Methods in molecular biology (Clifton, N.J.) 01/2013; 973:227-47. · 1.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently reported a deletion of exon 2 of the trimethyllysine hydroxylase epsilon (TMLHE) gene in a proband with autism. TMLHE maps to the X chromosome and encodes the first enzyme in carnitine biosynthesis, 6-N-trimethyllysine dioxygenase. Deletion of exon 2 of TMLHE causes enzyme deficiency, resulting in increased substrate concentration (6-N-trimethyllysine) and decreased product levels (3-hydroxy-6-N-trimethyllysine and γ-butyrobetaine) in plasma and urine. TMLHE deficiency is common in control males (24 in 8,787 or 1 in 366) and was not significantly increased in frequency in probands from simplex autism families (9 in 2,904 or 1 in 323). However, it was 2.82-fold more frequent in probands from male-male multiplex autism families compared with controls (7 in 909 or 1 in 130; P = 0.023). Additionally, six of seven autistic male siblings of probands in male-male multiplex families had the deletion, suggesting that TMLHE deficiency is a risk factor for autism (metaanalysis Z-score = 2.90 and P = 0.0037), although with low penetrance (2-4%). These data suggest that dysregulation of carnitine metabolism may be important in nondysmorphic autism; that abnormalities of carnitine intake, loss, transport, or synthesis may be important in a larger fraction of nondysmorphic autism cases; and that the carnitine pathway may provide a novel target for therapy or prevention of autism.
    Proceedings of the National Academy of Sciences 05/2012; 109(21):7974-81. · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic mechanisms may play an important role in the developmental programming of adult-onset chronic metabolic diseases resulting from suboptimal fetal nutrition, but the exact molecular mechanisms are incompletely understood. Given the central role of the liver in metabolic regulation, we investigated whether chronic maternal dietary protein restriction has long-term effects on liver gene expression in the offspring. We fed adult C57BL/6J dams ad libitum an 8% maternal low-protein (MLP) or 20% protein control diet (C) from 4 wk prior to mating until the end of lactation. Male pups were weaned to standard nonpurified diet and singly housed at 21 d of age (d 21). Body weights were followed to 1 y of age (1 y). At d 21 and 1 y, organs were quantitatively dissected and analyzed. MLP offspring had significantly lower body weights at all ages and significantly lower serum activity of alanine aminotransferase and lactate dehydrogenase at 1 y. Gene expression profiling of liver at 1 y showed 521 overexpressed and 236 underexpressed genes in MLP compared to C offspring. The most important novel finding was the overexpression of genes found in liver that participate in organization and maintenance of higher order chromatin architecture and regulation of transcriptional activation. These included members of the cohesin-mediator complex, which regulate gene expression by forming DNA loops between promoters and enhancers in a cell type-specific fashion. Thus, our findings of increased expression of these factors in liver of MLP offspring implicate a possible novel epigenetic mechanism in developmental programming.
    Journal of Nutrition 12/2011; 141(12):2106-12. · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pediatric undifferentiated soft tissue sarcomas (USTSs) are a group of malignancies composed predominantly of primitive round cell sarcomas, the histogenesis of which is uncertain. Thus, diagnosis and therapy remain a challenge. The aims of the current study were to determine whether differential expression of stem cell-associated proteins could be used to aid in determining the histogenesis of pediatric USTSs and to determine whether pediatric USTSs expressed a unique panel of stem cell-associated proteins to aid diagnosis. Tumors included 28 Ewing sarcoma/primitive neuroectodermal tumors (ESs), 22 embryonal rhabdomyosarcomas (ERMSs), 8 alveolar rhabdomyosarcomas (ARMSs), 5 synovial sarcomas (SSs), 5 malignant peripheral nerve sheath tumors (MPNSTs), and 13 USTSs. Stem cell antibodies included 3 mesenchymal stem cell markers (CD44, CD105, and CD166) and 5 neural stem cell markers (CD15, CD29, CD56, CD133, and nestin). Sections were scored followed by statistical analysis, clustering analysis, and visualizations using Partek Genomic Suite Software. The Euclidean clustering divided the tumors into 2 major groups. ESs and USTSs formed the majority of the 1st group, whereas ERMSs, ARMSs, MPNSTs, and SSs formed the 2nd group. Reduced expression of CD56 was strongly associated with the ES/USTS cluster (P < 0.0001). ESs and USTSs were further separated by CD166 staining, wherein increased expression was associated with ES (P < 0.0001). The 2nd group included the majority of other sarcomas, with no consistent separation between subtypes. The current study demonstrates the usefulness of applying stem cell markers to pediatric sarcomas and indicates that USTSs and ESs are closely related and may share a common histogenesis.
    Pediatric and Developmental Pathology 01/2011; 14(4):259-72. · 0.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human osteosarcoma is the most common pediatric bone tumor. There is limited understanding of the molecular mechanisms underlying osteosarcoma oncogenesis, and a lack of good diagnostic as well as prognostic clinical markers for this disease. Recent discoveries have highlighted a potential role of a number of genes including: RECQL4, DOCK5, SPP1, RUNX2, RB1, CDKN1A, P53, IBSP, LSAMP, MYC, TNFRSF1B, BMP2, HISTH2BE, FOS, CCNB1, and CDC5L. Our objective was to assess relative expression levels of these 16 genes as potential biomarkers of osteosarcoma oncogenesis and chemotherapy response in human tumors. We performed quantitative expression analysis in a panel of 22 human osteosarcoma tumors with differential response to chemotherapy, and 5 normal human osteoblasts. RECQL4, SPP1, RUNX2, and IBSP were significantly overexpressed, and DOCK5, CDKN1A, RB1, P53, and LSAMP showed significant loss of expression relative to normal osteoblasts. In addition to being overexpressed in osteosarcoma tumor samples relative to normal osteoblasts, RUNX2 was the only gene of the 16 to show significant overexpression in tumors that had a poor response to chemotherapy relative to good responders. These data underscore the loss of tumor suppressive pathways and activation of specific oncogenic mechanisms associated with osteosarcoma oncogenesis, while drawing attention to the role of RUNX2 expression as a potential biomarker of chemotherapy failure in osteosarcoma.
    BMC Cancer 01/2010; 10:202. · 3.33 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNAs (miRs) are non-coding RNA molecules involved in cancer initiation and progression. Deregulated miR expression has been implicated in cancer; however, there are no studies implicating an miR signature associated with progression in oral squamous cell carcinoma (OSCC). Although OSCC may develop from oral leukoplakia, clinical and histological assessments have limited prognostic value in predicting which leukoplakic lesions will progress. Our aim was to quantify miR expression changes in leukoplakia and same-site OSCC and to identify an miR signature associated with progression. We examined miR expression changes in 43 sequential progressive samples from 12 patients and four non-progressive leukoplakias from four different patients, using TaqMan Low Density Arrays. The findings were validated using quantitative RT-PCR in an independent cohort of 52 progressive dysplasias and OSCCs, and five non-progressive dysplasias. Global miR expression profiles distinguished progressive leukoplakia/OSCC from non-progressive leukoplakias/normal tissues. One hundred and nine miRs were highly expressed exclusively in progressive leukoplakia and invasive OSCC. miR-21, miR-181b and miR-345 expressions were consistently increased and associated with increases in lesion severity during progression. Over-expression of miR-21, miR-181b and miR-345 may play an important role in malignant transformation. Our study provides the first evidence of an miR signature potentially useful for identifying leukoplakias at risk of malignant transformation.
    Human Molecular Genetics 09/2009; 18(24):4818-29. · 7.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Altered gene expression in tumors can be caused by copy number alterations to DNA or mutation affecting coding or regulatory regions of genes. However, epigenetic events may also influence gene expression. Malignant cells can show major disruptions in DNA methylation profiles, which are manifested as aberrant hypermethylation or as hypomethylation of gene promoters, as well as global genomic hypomethylation. In this study we performed integrative whole-genome analysis of DNA copy number, promoter methylation and gene expression using 10 osteosarcomas. We identified significant changes including: hypomethylation, gain, and overexpression of histone cluster 2 genes at chromosome 1q21.1-q21.3; loss of chromosome 8p21.2-p21.3 and underexpression of DOCK5 and TNFRSF10A/D genes; and amplification-related overexpression of RUNX2 at chromosome 6p12.3-p21.1. Amplification and overexpression of RUNX2 could disrupt G2/M cell cycle checkpoints, and downstream osteosarcoma-specific changes, such as failure of bone differentiation and genomic polyploidization. Failure of DOCK5-signaling, together with p53 and TNFRSF10A/D-related cell cycle and death pathways, may play a critical role in abrogating apoptosis. Our analyses show that the RUNX2 interactome may be constitutively activated in osteosarcoma, and that the downstream intracellular pathways are strongly associated with the regulation of osteoblast differentiation and control of cell cycle and apoptosis in osteosarcoma.
    Human Molecular Genetics 04/2009; 18(11):1962-75. · 7.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Promoter and 5' end methylation regulation of tumour suppressor genes is a common feature of many cancers. Such occurrences often lead to the silencing of these key genes and thus they may contribute to the development of cancer, including prostate cancer. In order to identify methylation changes in prostate cancer, we performed a genome-wide analysis of DNA methylation using Agilent human CpG island arrays. Using computational and gene-specific validation approaches we have identified a large number of potential epigenetic biomarkers of prostate cancer. Further validation of candidate genes on a separate cohort of low and high grade prostate cancers by quantitative MethyLight analysis has allowed us to confirm DNA hypermethylation of HOXD3 and BMP7, two genes that may play a role in the development of high grade tumours. We also show that promoter hypermethylation is responsible for downregulated expression of these genes in the DU-145 PCa cell line. This study identifies novel epigenetic biomarkers of prostate cancer and prostate cancer progression, and provides a global assessment of DNA methylation in prostate cancer.
    PLoS ONE 02/2009; 4(3):e4830. · 3.53 Impact Factor
  • Oral Oncology Supplement 01/2009; 3(1):92-92.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Both genetic and epigenetic changes contribute to development of human cancer. Oncogenomics has primarily focused on understanding the genetic basis of neoplasia, with less emphasis being placed on the role of epigenetics in tumourigenesis. Genomic alterations in cancer vary between the different types and stages, tissues and individuals. Moreover, genomic change ranges from single nucleotide mutations to gross chromosomal aneuploidy; which may or may not be associated with underlying genomic instability. Collectively, genomic alterations result in widespread deregulation of gene expression profiles and the disruption of signalling networks that control proliferation and cellular functions. In addition to changes in DNA and chromosomes, it has become evident that oncogenomic processes can be profoundly influenced by epigenetic mechanisms. DNA methylation is one of the key epigenetic factors involved in regulation of gene expression and genomic stability, and is biologically necessary for the maintenance of many cellular functions. While there has been considerable progress in understanding the impact of genetic and epigenetic mechanisms in tumourigenesis, there has been little consideration of the importance of the interplay between these two processes. In this review we summarize current understanding of the role of genetic and epigenetic alterations in human cancer. In addition we consider the associated interactions of genetic and epigenetic processes in tumour onset and progression. Furthermore, we provide a model of tumourigenesis that addresses the combined impact of both epigenetic and genetic alterations in cancer cells.
    Current Genomics 10/2008; 9(6):394-408. · 2.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GADD45 genes are epigenetically inactivated in various types of cancer and tumor cell lines. To date, defects of the GADD45 gene family have not been implicated in osteosarcoma (OS) oncogenesis, and the role of this pathway in regulating apoptosis in this tumor is unknown. The therapeutic potential of Gadd45 in OS emerged when our previous studies showed that GADD45A was reexpressed by treatment with the demethylation drug decitabine. In this study, we analyze the OS cell lines MG63 and U2OS and show that on treatment with decitabine, a significant loss of DNA methylation of GADD45A was associated with elevated expression and induction of apoptosis. In vivo affects of decitabine treatment in mice showed that untreated control xenografts exhibited low nuclear staining for Gadd45a protein, whereas the nuclei from xenografts in decitabine-treated mice exhibited increased amounts of protein and elevated apoptosis. To show the specificity of this gene for decitabine-induced apoptosis in OS, GADD45A mRNAs were disrupted using short interference RNA, and the ability of the drug to induce apoptosis was reduced. Understanding the role of demethylation of GADD45A in reexpression of this pathway and restoration of apoptotic control is important for understanding OS oncogenesis and for more targeted therapeutic approaches.
    Neoplasia (New York, N.Y.) 06/2008; 10(5):471-80. · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Current toxicogenomic approaches generate transcriptional profiles that can identify functional gene expression signatures of environmental toxicants. However, the intricate processes governing transcription are overlaid with a complex set of molecular instructions involving epigenetic modifications. These commands regulate both gene expression and chromatin organization through coordinated sets of histone modifications and heritable DNA methylation patterns. Although the effects of specific environmental toxicants on gene expression are the subject of much study, the epigenetic effects of such compounds are poorly understood. Here we have used human promoter tiling arrays along with chromatin immunoprecipitation to identify changes in histone acetylation profiles because of chemical exposure. Chromatin from cells exposed to the polyaromatic hydrocarbon benzo(a)pyrene was immunoprecipitated with antibodies against acetylated histones. Affymetrix promoter tiling microarrays were probed to generate epigenomic profiles of hypo- and hyperacetylated chromatin localized to gene promoter regions. Statistical analyses, data mining, and expression studies revealed that treated cells possessed differentially acetylated gene promoter regions and gene-specific expression changes. This chromatin immunoprecipitation-on-chip approach permits genome-wide profiling of histone acetylation patterns that can identify chromatin-related signatures of environmental toxicants and potentially determine the molecular pathways these changes target. This approach also has potential applications for profiling histone modifications and DNA methylation changes during embryonic development, in cancer biology, and in the development and assessment of cancer therapeutics.
    Journal of Biological Chemistry 03/2008; 283(7):4051-60. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic and epigenetic changes contribute to deregulation of gene expression and development of human cancer. Changes in DNA methylation are key epigenetic factors regulating gene expression and genomic stability. Recent progress in microarray technologies resulted in developments of high resolution platforms for profiling of genetic, epigenetic and gene expression changes. OS is a pediatric bone tumor with characteristically high level of numerical and structural chromosomal changes. Furthermore, little is known about DNA methylation changes in OS. Our objective was to develop an integrative approach for analysis of high-resolution epigenomic, genomic, and gene expression profiles in order to identify functional epi/genomic differences between OS cell lines and normal human osteoblasts. A combination of Affymetrix Promoter Tilling Arrays for DNA methylation, Agilent array-CGH platform for genomic imbalance and Affymetrix Gene 1.0 platform for gene expression analysis was used. As a result, an integrative high-resolution approach for interrogation of genome-wide tumour-specific changes in DNA methylation was developed. This approach was used to provide the first genomic DNA methylation maps, and to identify and validate genes with aberrant DNA methylation in OS cell lines. This first integrative analysis of global cancer-related changes in DNA methylation, genomic imbalance, and gene expression has provided comprehensive evidence of the cumulative roles of epigenetic and genetic mechanisms in deregulation of gene expression networks.
    PLoS ONE 02/2008; 3(7):e2834. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic alterations have emerged as a key mechanism involved in tumorigenesis. These disruptions are partly due to environmental factors that change normal DNA methylation patterns necessary for transcriptional regulation and chromatin compaction. Microarray technologies are allowing environmentally susceptible epigenetic patterns to be mapped and the precise targets of environmentally induced alterations to be identified. Previously, we observed BaP-induced epigenetic events and cell cycle disruptions in breast cancer cell lines that included time- and concentration-dependent loss of proliferation as well as sequence-specific hypo- and hypermethylation events. In this present report, we further characterized epigenetic changes in BaP-exposed MCF-7 cells. We analyzed DNA methylation on a CpG island microarray platform with over 5400 unique genomic regions. Depleted and enriched microarray targets, representative of putative DNA methylation changes, were identified across the genome; however, subsequent sodium bisulfite analyses revealed no changes in DNA methylation at a number of these loci. Instead, we found that the identification of DNA methylation changes using this restriction enzyme-based microarray approach corresponded with the regions of DNA bound by the BaP derived DNA adducts. This DNA adduct formation occurs at both methylated and unmethylated CpG dinucleotides and affects PCR amplification during sample preparation. Our data suggest that caution should be exercised when interpreting data from comparative microarray experiments that rely on enzymatic reactions. These results are relevant to genome screening approaches involving environmental exposures in which DNA adduct formation at specific nucleotide sites may bias target acquisition and compromise the correct identification of epigenetically responsive genes.
    Toxicology and Applied Pharmacology 01/2008; 225(3):300-9. · 3.98 Impact Factor

Publication Stats

437 Citations
108.09 Total Impact Points

Institutions

  • 2013
    • Baylor College of Medicine
      • Department of Molecular & Human Genetics
      Houston, TX, United States
  • 2008–2011
    • SickKids
      • • Department of Paediatric Laboratory Medicine (DPLM)
      • • Division of Pathology
      Toronto, Ontario, Canada
  • 2010
    • Queen's University
      • Department of Pathology and Molecular Medicine
      Kingston, Ontario, Canada
  • 2004–2008
    • The University of Western Ontario
      • Department of Biochemistry
      London, Ontario, Canada