Are you Soohyun Park?

Claim your profile

Publications (2)14.07 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Alanine aminotransferase (ALT) is used as an indicator of hepatocellular injury. Since ALT consists of two isoenzymes, a better understanding of ALT isoenzyme biology in response to compounds that cause metabolic adaptive versus hepatotoxic responses will allow for a more accurate assessment of the significance of an ALT increase. The purpose of this study was to characterize the ALT isoenzyme response in mice treated with 25 or 75 mg/kg of dexamethasone, which is known to induce a progluconeogenic state, for 24 or 72 hr. Those mice treated with 75 mg/kg for 72 hr showed an increase in total liver ALT activity. Western blot showed that there was an increase in ALT2 at both doses and time points and there was a concurrent increase in ALT2 ribonucleic acid at 24 and 72 hr. The ALT isoenzyme response assessed by an activity assay showed an increase in ALT2. The increases in liver ALT were associated with an increase in liver glycogen and there was no hepatocellular necrosis. There was an increase in total serum ALT activity, although serum isoenzymes were not evaluated. Thus, the authors demonstrated that dexamethasone induced increases in hepatic and serum ALT, which reflect a hepatocellular progluconeogenic metabolic adaptive response.
    Toxicologic Pathology 05/2012; · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The elevation of serum alanine aminotransferase (ALT) is regarded as an indicator of liver damage based on the presumption that ALT protein is specifically and abundantly expressed in the liver. However, ALT elevation is also observed in non-liver injury conditions (for example, muscle injury) and in apparently healthy people. Conversely, serum ALT activity is normal in many patients with confirmed liver diseases (for example, cirrhosis and hepatitis C infection). To improve the diagnostic value of the ALT assay and to understand the molecular basis for serum ALT changes in various pathophysiological conditions, we have cloned rat ALT isoenzyme ALT1 and ALT2 complementary DNAs (cDNAs), examined their tissue expressions at the messenger RNA and protein levels, and determined ALT1 and ALT 2 serum levels in response to liver damage in rodents. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis shows that ALT1 messenger RNA is widely distributed and mainly expressed in intestine, liver, fat tissues, colon, muscle, and heart, in the order of high to low expression level, whereas ALT2 gene expression is more restricted, mainly in liver, muscle, brain, and white adipose tissue. The tissue distribution pattern of ALT1 and ALT2 proteins largely agrees with their messenger RNA expression. Interestingly, hepatic ALT2 protein is approximately four times higher in male rats than in female rats. In addition, ALT isoenzymes distribute differentially at the subcellular level in that ALT1 is a cytoplasmic protein and ALT2 a mitochondrial protein, supporting bioinformatic prediction of mitochondrial localization of ALT2. Conclusion: Using animal models of hepatoxicity induced by carbon tetrachloride and acetaminophen, we found that both serum ALT1 and ALT2 protein levels were significantly elevated and correlated with ALT activity, providing, for the first time, the molecular basis for the elevated total serum ALT activity.
    Hepatology 10/2008; 49(2):598-607. · 12.00 Impact Factor