Xiaohong Mao

Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States

Are you Xiaohong Mao?

Claim your profile

Publications (3)38.56 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Succinate acts as an extracellular mediator signaling through the G protein-coupled receptor GPR91. Here we show that dendritic cells had high expression of GPR91. In these cells, succinate triggered intracellular calcium mobilization, induced migratory responses and acted in synergy with Toll-like receptor ligands for the production of proinflammatory cytokines. Succinate also enhanced antigen-specific activation of human and mouse helper T cells. GPR91-deficient mice had less migration of Langerhans cells to draining lymph nodes and impaired tetanus toxoid-specific recall T cell responses. Furthermore, GPR91-deficient allografts elicited weaker transplant rejection than did the corresponding grafts from wild-type mice. Our results suggest that the succinate receptor GPR91 is involved in sensing immunological danger, which establishes a link between immunity and a metabolite of cellular respiration.
    Nature Immunology 10/2008; 9(11):1261-9. · 26.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Germ-line mutations in bone morphogenic protein type II receptor (Bmpr2) confer susceptibility to pulmonary arterial hypertension (PAH), which is characterized by obstructive vascular lesions in small arteries. The molecular and cellular mechanisms that account for the etiology of this disorder remain elusive, as does the role of Bmpr2 in postnatal tissue homeostasis. Here we show that in adult mice, stably silencing Bmpr2 expression by RNA interference does not increase pulmonary arterial resistance but results in severe mucosal hemorrhage, incomplete mural cell coverage on vessel walls, and gastrointestinal hyperplasia. We present evidence that BMP receptor signaling regulates vascular remodeling during angiogenesis by maintaining the expression of endothelial guidance molecules that promote vessel patterning and maturation and by counteracting growth factor-induced AKT activation. Attenuation of this function may cause vascular dysmorphogenesis and predisposition to angioproliferative diseases. Our findings provide a mechanistic link between PAH and other diseases associated with the BMP/TGF-beta pathways, such as hereditary hemorrhagic telangiectasia and juvenile polyposis syndrome.
    Blood 10/2007; 110(5):1502-10. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Conventional approaches to produce transgenic mice recurrently yield unpredictable patterns and levels of transgene expression, a situation calling for the development of new techniques to overcome these drawbacks in the context of overexpression studies. Here we present an efficient method for rapid and reproducible transgenesis using the recombinase mediated cassette exchange (RMCE) (Bouhassira et al.: Blood 90:3332-3344, 1997) procedure. A lox511-EGFP-TK/neo-loxP cassette was placed under the control of the endogenous mouse beta-actin promoter. Heterozygous mice revealed strong and ubiquitous EGFP expression throughout embryogenesis and adulthood. Reproducibly, the same expression pattern was obtained with RMCE when it was used to replace the EGFP-harboring cassette by ECFP or placental alkaline phosphatase (PLAP) reporter genes (DePrimo et al.: Transgenic Res 5:459-466, 1996). Furthermore, the RMCE procedure proved efficient as well in embryonic stem (ES) cells as directly in zygotes. Our results demonstrate ubiquitous expression of floxed transgenes in the endogenous beta-actin locus and they support the general use of the beta-actin locus for targeted transgenesis.
    genesis 09/2005; 42(4):229-35. · 2.58 Impact Factor